Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrozellen sollen sich selbst zusammensetzen und chemische Reaktionen dirigieren

29.08.2012
Wenn Elektronik sich wie Mikroorganismen benimmt
3,4 Millionen Euro aus EU-Förderprogramm für internationales Forschungsvorhaben

Der erste Platz in einer hochkompetitiven EU-Ausschreibung zum Thema „Unconventional Computing“ ging an das Kooperationsprojekt „MICREAgents“ unter Federführung von RUB-Professor John McCaskill von der Fakultät für Chemie und Biochemie.


MICREAgent lablets: Die intelligenten künstlichen Zellen sind mit autonomer Elektronik ausgestattet. Sie setzen sich selbst zusammen, um als Paare („gemlabs“ oder „Zwillings-lablets“) mikroskopische chemische Reaktoren zu bilden. Sie können dann Information und Chemikalien miteinander oder an einer dafür vorgesehenen Andockoberfläche austauschen.

Copyright: John McCaskill

Die Forscher wollen autonome elektronische Mikroreagenzien entwickeln, die kaum größer als lebende Zellen sind und sich selbst zusammensetzen. Die intelligenten Mikrozellen werden in wässrige Lösungen gegeben, wo sie chemische und elektronische Information austauschen, um gemeinsam komplexe chemische Reaktionen oder Analysen auszuführen – ganz nach dem Motto „berechnen gleich konstruieren“.

Die Technik könnte zum Beispiel in der „Point-of-Care“-Diagnostik, etwa für medizinische Schnelltests, oder zur Synthese von Nanopartikeln eingesetzt werden. Die EU fördert das Forschungsvorhaben im FP7-Programm mit 3,4 Millionen Euro für drei Jahre. Vier Forschergruppen der RUB kooperieren mit Wissenschaftlern von fünf anderen europäischen Universitäten sowie aus Israel und Neuseeland.

Mikro-„Agenten“, die sich selbst zusammensetzen und kommunizieren
Ziel des Projekts ist es, programmierbare elektronische Chemie auf der Mikroskala zu schaffen. Dafür stellen die Forscher sogenannte „lablets“ her, Einheiten mit elektronischen Schaltkreisen auf 3D-Mikrochips, die sich zu MICREAgents (Microscopic Chemically Reactive Electronic Agents) zusammensetzen. Die lablets haben einen Durchmesser von weniger als 100 µm und finden sich selbstständig zu Paaren oder größeren Gruppen zusammen, um dynamische Reaktionskammern zu bilden. Mit ihrer Elektronik kontrollieren sie chemische Prozesse in ihrer unmittelbaren Umgebung, ähnlich wie die genetische Information in Zellen die lokalen chemischen Vorgänge kontrolliert: Sie können Chemikalien selektiv konzentrieren, verarbeiten und wieder in die Lösung abgeben. Der paarweise Zusammenschluss ist reversibel; er erlaubt, Informationen von einem lablet zum anderen zu transferieren.

Elektronische Signale in chemische Prozesse übersetzen

Die lablets sollen Transistoren, Superkondensatoren, Energiewandler und Sensoren enthalten sowie Aktuatoren für die lablet-Trennung und den Chemikalienaustausch. Diese Ausstattung erlaubt es ihnen, elektronische Signale in chemische Konstruktionsprozesse zu übersetzen und die Ergebnisse der Prozesse aufzuzeichnen. Die Chemikalien sind also nicht in einem Reaktor, der die Verarbeitung von außen steuert. Stattdessen werden die intelligenten MICREAgents in die Mixtur aus Chemikalien gegossen und organisieren die chemischen Reaktionen aus dem Inneren heraus.
Berechnungen sind mit Konstruktionsprozessen verwoben

Die intelligenten Mikroreagenzien können zum Beispiel für die Vervielfältigung von Molekülen programmiert werden, oder für andere chemische Prozesse, die aus komplexen Gemischen Chemikalien konzentrieren oder aufreinigen. Sie können Reaktionen in Kaskaden durchführen, detektieren, wann Reaktionen abgeschlossen sind, Produkte transportieren und an bestimmten Orten absetzen. Es handelt sich um einen neuen Weg, Berechnungen und Konstruktion zu verknüpfen. MICREAgents setzen sich nicht nur selbst zusammen, sie sind auch fähig zur Evolution. Damit gehen sie sogar noch über John von Neumanns universelle Konstruktionsmaschine hinaus, die komplexere Maschinen als sich selbst herstellen sollte. Obwohl die nanostrukturierten Einheiten schon bald in der Lage sein werden, ihre chemische und elektronische Information zu replizieren, besteht nicht die Gefahr, dass sie sich unkontrolliert in der Umwelt ausbreiten. Denn ihre Funktion ist abhängig von einem durch uns hergestellten komplexen elektronischen Substrat.

Projektpartner aus der RUB

Prof. Dr. John S. McCaskill (Microsystems Chemistry and Biological Information Technology) arbeitet zusammen mit Prof. Dr. Günter von Kiedrowski (Bioorganische Chemie), Prof. Dr. Jürgen Oehm (Analoge Integrierte Schaltungen) und Dr. Pierre Mayr (Integrierte Systeme). Die Gruppen von Prof. McCaskill und Prof. von Kiedrowski haben schon früher in EU-Projekten kooperiert, um künstliche Zellen zu erforschen. „ECCell“, das im Februar 2012 auslief, legte die Basis für elektrochemische Zellen. In diesem Projekt umgab die Elektronik die Chemie; in MICREAgents drehen die Forscher dieses Verhältnis um: Autonome elektronische Teilchen berechnen chemische Reaktionen.

Weitere Informationen

Prof. Dr. John S. McCaskill, BioMIP: Microsystems Chemistry and BioIT, Fakultät für Chemie und Biochemie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27702
john.mccaskill@rub.de

Angeklickt

Ausführliche Projektbeschreibung (englisch)
http://aktuell.ruhr-uni-bochum.de/mam/content/projektbeschreibung_micreagents.pdf

BioMIP at RUB
http://homepage.ruhr-uni-bochum.de/john.mccaskill/BioMIP/

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics