Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroben im Marianengraben

18.03.2013
Eine erstaunlich aktive bakterielle Gemeinschaft lebt am tiefsten Punkt des Meeresbodens
Das Sediment des tiefsten Punktes der Erde, des Challengertiefs im Marianengraben, zeigt eine erstaunlich hohe mikrobielle Aktivität. Ein internationales Forscherteam um Professor Ronnie Glud von der Universität von Süddänemark, unter Beteiligung von Dr. Frank Wenzhöfer von der HGF-MPG Brückengruppe für Tiefsee-Ökologie und –Technologie des Max-Planck-Instituts für Marine Mikrobiologie in Bremen und des Alfred-Wegener-Instituts für Polar- und Meeresforschung in Bremerhaven, konnte zeigen, dass Mikroben in dieser von extremem Druck gekennzeichneten Umgebung zahlreich und sehr aktiv sind.

Ihre Forschungsergebnisse haben sie nun in der wissenschaftlichen Fachzeitschrift Nature Geoscience veröffentlicht.Ein internationales Forscherteam stellt seine Ergebnisse von einem der unzugänglichsten Platz auf unserer Erde vor: dem Meeresboden des Marianengrabens im Westpazifik, auf fast 11000 m Tiefe unter dem Meeresspiegel, was ihn zum tiefsten Punkt der Erde macht. Ihre Ergebnisse zeigen, dass eine höchst aktive Mikrobengemeinschaft die Sedimente des Grabens bewohnt, und das, obwohl dort ein extrem hoher Druck, 1100 mal so hoch wie auf Meeresspiegelhöhe, herrscht. In den Sedimenten des Grabens fanden die Forscher eine vielfach höhere Anzahl von Bakterien als in den umliegenden Sedimenten der Tiefseeebene auf „nur“ 6000 Meter Tiefe.

Hohe mikrobielle Aktivität in Tiefseegräben

Tiefseegräben sind Orte von hoher mikrobieller Aktivität, denn der Eintrag von organischem Material ist ungewöhnlich hoch. Dazu zählen absinkende Kadaver von Meerestieren, aber auch Reste von Algen, die sporadisch immer wieder in großen Mengen auf den Meeresboden sinken. An den Grabenhängen kann dieses Material, durch Erdbeben mobilisiert, in die tiefsten Stellen des Grabens abrutschen.
Demnach haben Tiefseegräben, obwohl sie nur etwa 2 % der Fläche der Ozeane der Erde ausmachen, einen relativ großen Einfluss auf den globalen Kohlenstoffkreislauf, so Professor Ronnie Glud von der Universität Süddänemark. Zusammen mit seinen Kollegen aus Deutschland (HGF-MPG Brückengruppe für Tiefsee-Ökologie und –Technologie des Max-Planck-Instituts für Marine Mikrobiologie und des Alfred-Wegener-Instituts für Polar- und Meeresforschung), Japan (Japan Agency for Marine-Earth Science and Technology), Scotland (Scottish Association for Marine Science) und Dänemark (Universität Kopenhagen) erkundete er den mikrobiellen Kohlenstoffumsatz im tiefsten Graben der Ozeane.

Technologische Herausforderung

Die Forscher maßen die Sauerstoffverteilung im Sediment des Grabens und an einer Referenzstelle auf 6000 m Tiefe und nahmen Sedimentkerne mit einem autonomen Probenahmegerät, welches mit einer Videokamera ausgestattet war. „Wir können aus der Sauerstoffverteilung die bakterielle Sauerstoffaufnahme, also die Atmung, berechnen,“ sagt Dr. Frank Wenzhöfer. „Zusammen mit der Information über den Gehalt an organischem Kohlenstoff im Sediment können wir so die mikrobielle Aktivität im Sediment abschätzen“. Natürlich sind die Messungen in solch großen Tiefen eine technische und logistische Herausforderung. „ Wenn wir Proben vom Meeresboden heraufholen, um sie im Labor zu untersuchen, überleben viele der an die Tiefseebedingungen angepassten Organismen die Temperatur- und Druckveränderung nicht. Deshalb haben wir Geräte entwickelt, die vorprogrammierte Messabläufe autonom auf dem Meeresboden bei hohem Druck ausführen.“, erklärt Ronnie Glud. Das Forscherteam hat mit mehreren Firmen zusammen einen Unterwasser-Roboter entwickelt, der beinahe 4 m groß ist und 600 kg wiegt. Dieser Roboter führte unter anderem die Sauerstoffmessungen mit ultraempfindlichen Sensoren durch.
"Auf unseren Videos aus der Tiefe sind kaum größere Tiere zu sehen“, sagt Ronnie Glud. „Wir haben es also mit einer Welt zu tun, die von Mikroorganismen dominiert ist, die in hohem Grade an für die meisten höheren Organismen feindlichen Bedingungen angepasst sind.“

Für Dr. Frank Wenzhöfer ist die Erforschung der Tiefseegräben nicht nur wichtig, um deren Einfluss auf den globalen Kohlenstoffkreislauf genauer definieren zu können. „Die Tiefseegräben sind nach wie vor einige der letzten weißen Flecken auf der Landkarte. Wir möchten gerne die bakteriellen Gemeinschaften dort genauer charakterisieren und verstehen, wie sie sich an ein Leben in diesem außergewöhnlichen Lebensraum angepasst haben. Außerdem möchten wir herausfinden, ob der mikrobielle Kohlenstoffumsatz in der Tiefsee Auswirkungen auf unser Klima hat. Dazu sind Expeditionen zu weiteren Tiefseegräben, zum Beispiel dem Kermadec-Tonga-Graben bei den Fiji-Inseln, geplant.“
Rückfragen an
Professor Ronnie Glud, Nordic Center for Earth Evolution at the University of Southern Denmark. Phone: +45 65 50 27 84, mobile: +45 60 11 19 13, email: rnglud@biology.sdu.dk

Dr. Frank Wenzhöfer, HGF-MPG Brückengruppe für Tiefsee-Ökologie und –Technologie
fwenzhoe@mpi-bremen.de
Telefon: +49 (0) 421 2028 862

Oder an die Pressesprecher
Dr. Rita Dunker rdunker@mpi-bremen.de +49 (0) 421 2028 856
Dr. Manfred Schlösser mschloes@mpi-bremen.de +49 (0) 421 2028 704

Originalarbeit

High rate of microbial carbon turnover in sediments in the deepest oceanic trench on Earth, 2013. Ronnie N. Glud, FrankWenzhöfer, Mathias Middelboe, Kazumasa Oguri,

Der Tiefsee-Lander nach erfolgreicher Mission und dreistündigem Aufstieg durch die Wassersäule. Die Wissenschaftler an Bord des FS Yokosuka konnten damit auf insgesamt vier Tauchgängen viele wissenschaftliche Daten und Proben sammeln.
Frank Wenzhöfer

Robert Turnewitsch, Donald E. Canfield and Hiroshi Kitazato. Nature Geoscience

DOI: 10.1038/NGEO1773

Beteiligte Institute

University of Southern Denmark, Nordic Centre for Earth Evolution, Odense, Dänemark

Scottish Association for Marine Science, Scottish Marine Institute, Oban, Großbrittanien

Greenland Climate Research Centre, Nuuk, Grönland

Max-Planck-Institut für Marine Mikrobiologie, Bremen

Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven

Universität Kopenhagen, Marine Biological Section, Helsingør, Dänemark

Japan Agency for Marine-Earth Science and Technology, Institute of Biogeosciences, Yokosuka, Japan

Japan Agency for Marine-Earth Science and Technology, Marine Technology and Engineering Center, Yokosuka, Japan

Dr. Manfred Schloesser | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-bremen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Signale aus der Pflanzenzelle
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Wie Antibiotikaresistenzen dank egoistischer genetischer Elemente überdauern
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics