Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobe des Jahres 2015: Rhizobium - Kein Gemüse ohne Bakterien

09.02.2015

„Knöllchenbakterium“ heißt die Mikrobe des Jahres 2015, mit wissenschaftlichem Namen Rhizobium („in den Wurzeln lebend“). Diese Mikrobe erleichtert den Anbau von Bohnen, Erbsen, Linsen und Futtermitteln wie Klee. Die Bakterien liefern diesen Pflanzen das für ihr Wachstum notwendige Ammonium auf natürlichem Weg und ersetzen damit künstlichen Dünger. An den Wurzeln dieser Pflanzen sind die Knöllchen mit den Bakterien deutlich sichtbar. Die Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) kürte diesen faszinierenden Mikroorganismus am 9. Februar 2015 zur Mikrobe des Jahres 2015.

Impfung für Saatgut


Wurzelknöllchen am Rotklee

© Harald Engelhardt, Martinsried


Knöllchenbakterien in der Wurzel von Schneckenklee (Medicago truncatula) vier Wochen nach Infektion mit Sinorhizobium meliloti

© Ulrike Mathesius, Canberra, Australien

Schon vor über 100 Jahren hatte man erkannt, dass bestimmte Pflanzen, die Hülsenfrüchtler, in Erde reich an Rhizobien gut wachsen. Heutzutage wäre die weltweite Produktion von über 250 Millionen Tonnen Soja im Wert von 50 Milliarden US-Dollar nicht denkbar ohne Knöllchenbakterien:

Schon das Saatgut wird mit dem verwandten Bakterium Bradyrhizobium beimpft, um das Wachstum der Soja-Pflanzen sicherzustellen. Die Pflanze sendet chemische Signale aus; daraufhin dringen die Bakterien in die Wurzelhärchen ein, und es entstehen in wenigen Wochen bakteriengefüllte Knöllchen.

Knöllchen bilden Blutfarbstoff

In diesen Knöllchen bilden die Pflanzen einen roten Farbstoff (Leghämoglobin), nah verwandt mit dem menschlichen Blutfarbstoff Hämoglobin. Er sorgt – wie in unserem Blut – dafür, dass Sauerstoff gebunden werden kann. Das ist notwendig, um eine Sauerstoff-arme Umgebung herzustellen. Nur dann funktioniert die spezielle Enzym-Maschinerie der Bakterien – und die kann etwas, was die Pflanze nicht kann: Sie wandelt den Stickstoff (N2) aus der Luft um in Ammonium (NH4+).

Ammonium benötigen Pflanzen wie alle Lebewesen, um Proteine und Bausteine für ihr Erbgut herzustellen. Alle Hülsenfrüchtler – zu denen außer Bohne, Erbse, Kichererbse und Erdnuss noch rund 18.000 Arten zählen – können so dank Rhizobium und verwandter Bakterien auf stickstoffarmen Böden wachsen.

Pflanze und Bakterium: eine win-win-Situation

Vor schätzungsweise 100 Millionen Jahren entwickelte sich diese faszinierende Zusammenarbeit zwischen Pflanzen und Bakterien. Normalerweise versuchen Pflanzen, das Eindringen von Bakterien zu verhindern. Doch hier entstand ein komplexes Kommunikationssystem, mit dem sich Pflanzen und Bakterien so verständigen, dass ein Zusammenleben zum beiderseitigen Nutzen gelingt:

Die Bakterien können sich geschützt vermehren und mit Nährstoffen über die Pflanze versorgen lassen; die Pflanze kann karge Böden besiedeln. Diese Zusammenarbeit ist von hoher ökologischer und wirtschaftlicher Bedeutung, sichert sie doch die pflanzliche Vielfalt vom Hasenklee bis zu Bäumen wie Akazie, Johannisbrot und Palisander, aber auch unsere Ernährung mit Gemüse sowie die Futtermittelproduktion.

Ersatz für Kunstdünger

Seit die Menschen intensiv Ackerbau betreiben, haben sie gelernt, durch Fruchtfolgen die Ertragsfähigkeit von Böden zu erhalten. Hülsenfrüchtler wie Rotklee, Lupine und Ackerbohne sind als Gründüngung die Grundlage für eine hohe Bodenqualität - weil Rhizobien die Stickstoffbindung sicherstellen. Nach Schätzungen binden Bakterien jährlich 170 Millionen Tonnen Stickstoff im Boden und in Pflanzen, davon etwa ein Viertel auf Agrarflächen. Anders als künstlicher Dünger belastet dies nicht die Gewässer mit Nitrat (NO3-Verbindungen).

Forscher suchen daher intensiv nach einem Weg, die Zusammenarbeit zwischen Rhizobien und Hülsenfrüchtlern auf Getreidesorten zu übertragen. Dazu müssen diese für die Welternährung so wichtigen Pflanzen jedoch die „Sprache“ lernen, um mit stickstoffversorgenden Bakterien kommunizieren und Wurzelknöllchen bilden zu können.
Anja Störiko

Die Mikrobe des Jahres wurde 2014 erstmals benannt. Mikrobiologen der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM) wählen sie aus, um auf die Vielfalt der mikrobiologischen Welt hinzuweisen. Während in der Bevölkerung Mikroorganismen vor allem als Krankheitsauslöser bekannt sind, spielen Mikroorganismen eine weit bedeutsamere Rolle für die Ökologie, Gesundheit, Ernährung und Wirtschaft, worauf die die Mikrobe des Jahres hinweisen soll.

Wer findet die Mikrobe des Jahres 2015? heißt der von der VAAM ausgerufene Wettbewerb für Schüler/innen und Studierende. Wer Fotos, Videos oder andere kreative Gestaltungen zu Rhizobium bis 15. Oktober 2015 einreicht, kann wertvolle Preise gewinnen. Weitere Informationen ab Ende Februar unter http://www.mikrobe-des-jahres.de.


Die VAAM ist Gründungsmitglied im VBIO und vertritt rund 3500 mikrobiologisch orientierte Wissenschaftlerinnen und Wissenschaftler aus Forschung und Industrie. Die Bandbreite der Forschung reicht von Bakterien, Archaeen und Pilzen in allen Ökosystemen und in Lebensmitteln über Krankheitserreger bis hin zu Genomanalysen und industrieller Nutzung von Mikroorganismen und ihren Enzymen.

Informationen, Experten-Kontakte, Bildmaterial:
Dr. Anja Störiko |Tel. 06192 23605 | info@mikrobe-des-jahres.de
www.mikrobe-des-jahres.de

Weitere Informationen:

http://www.mikrobe-des-jahres.de/

Dr. Kerstin Elbing | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Nah dran an der Fiktion: Die Außenhaut für das Raumschiff „Enterprise“?

22.06.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics