Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

MHH-und LZH-Forscher überwinden Hürde bei Gewebezüchtung

20.05.2011
Pluripotente Stammzellen erstmals in großen Mengen hergestellt / „Drucken“ von unterschiedlichen Zellen zu einem Zellverband möglich / Erfolg im Transregio 37

Hannoversche Forscher sind ihrem Ziel, Ersatzgewebe etwa für Herz und Haut zwei Schritte näher gekommen. Wissenschaftler unter der Leitung von Professor Dr. Axel Haverich und Professor Dr. Ulrich Martin von der Medizinischen Hochschule Hannover (MHH) entwickelten eine neue Technologie, mit der nun erstmals induzierte pluripotente Stammzellen (iPS-Zellen) in großer Menge hergestellt werden können. Sie können sich, ähnlich wie embryonale Stammzellen zu jeder beliebigen Zelle entwickeln, sind ethisch aber unbedenklich.

„Wir können mit dieser Technik viele Millionen Zellen in einem Ansatz herstellen. Damit sind erstmals die Voraussetzungen geschaffen, in größerem Umfang biologisch funktionales menschliches Gewebe wie Haut oder Herzmuskel im Labor zu züchten“, sagt Professor Martin. Eine detaillierte Beschreibung der neuen Technologie veröffentlichten die Forscher nun im Fachmagazin „Nature Protocols“. Eine MHH-Arbeitsgruppe um Professor Dr. Peter Vogt konnte darüber hinaus gemeinsam mit der Arbeitsgruppe von Professor Dr. Boris Chichkov vom Laser Zentrum Hannover e. V. (LZH), erstmals durch Lasertechnologie unterschiedliche Zellen in einen Zellverband „drucken“. „Die beiden Techniken bieten ganz neue Optionen auf dem Feld der Gewebezüchtung. Nun ist die Produktion von Gewebeersatz für die medizinische Anwendung erstmals in greifbare Nähe gerückt“, sagt Professor Dr. Axel Haverich, Sprecher des Transregio 37. Die Wissenschaftler arbeiten im Forschungsverbund des Transregio 37 „Mikro- und Nanosysteme in der Medizin – Rekonstruktion biologischer Funktionen“ zusammen.

Für die Gewebezüchtung im Labor benötigen Wissenschaftler möglichst viele Zellen – allein ein Quadratzentimeter Haut besteht aus mehreren Millionen. Bisher hat man pluripotente Zellen in Petrischalen gezüchtet. Dabei setzen sich die Zellen am Boden ab und bilden einen flachen Zellrasen. Bei dem neuen Verfahren schweben die Zellen in einer Suspension. Sie müssen weder vorbehandelt werden, noch ist die Zugabe von speziellen Bindemitteln nötig. Innerhalb von vier bis sieben Tagen können die Wissenschaftler so die sechsfache Menge herstellen. Die Zellen behalten dabei ihre Fähigkeit, sich zu jeder beliebigen Körperzelle entwickeln zu können.

Auch auf dem Gebiet der Gewebezüchtung konnten Wissenschaftler des Transregio 37 vor kurzem neue Erfolge vermelden. Ein großes Hindernis bei der Gewebezüchtung ist die komplexe Zusammensetzung der verschiedenen Gewebeverbände. Je nach Funktion des Gewebetyps sind unterschiedliche Zellen in dreidimensionalen Strukturen angeordnet. Die Forscher des Teilprojekts „Laserinduzierter Vorwärtstransfer“ (Laser Induced Forward Transfer - LIFT) stellten nun gewebsspezifische Strukturen nach genauen Vorgaben her. Schicht für Schicht „druckten“ sie erstmals mit dem Laser Haut- und Bindegewebszellen übereinander. Das Ergebnis: Den Wissenschaftlern gelang es, die Zellen in zwei- und dreidimensionalen Mustern anzuordnen.

Die Zellen überlebten den Transfer, blieben völlig intakt und funktionsfähig. Auch ihr charakteristisches Erscheinungsbild und das Differenzierungsverhalten blieben unbeeinträchtigt. Ihre Ergebnisse veröffentlichten die Forscher im Fachmagazin „Tissue Engineering“. „Das Drucken von Zellen mit der LIFT ist ein vielversprechendes Werkzeug, um in Zukunft im Labor dreidimensionalen Gewebeersatz erzeugen zu können“, sagt Professor Dr. Chichkov.

Innovativer Gewebeersatz, beispielsweise aus körpereigenen iPS-Zellen, wird dringend benötigt. „In Zukunft könnten wir vielleicht Zellen des verwundeten Patienten zunächst in iPS-Zellen umprogrammieren, vervielfältigen und anschließend mit der LIFT-Methode in einen Gewebeverband „drucken““, erklärt Professor Vogt. Auf diese Weise sollen in Zukunft größere Hautstücke zur Transplantation bei Verbrennung hergestellt werden. Bevor es aber so weit ist, müssen zunächst mögliche Risiken wie die Abstoßung des neu erzeugten Gewebes im Tierexperiment geprüft werden.

Weitere Informationen zu den neuen Kultivierungsverfahren erhalten Sie bei Dr. Robert Zweigerdt, Leibniz Forschungslaboratorien für Biotechnologie und künstliche Organe, Medizinische Hochschule Hannover, Telefon (0511) 532-5023, zweigerdt.robert@mh-hannover.de und bei Professor Dr. Peter Vogt, MHH-Klinik für Plastische, Hand- und Wiederherstellungschirurgie, Telefon (0511) 532-8860, vogt.peter@mh-hannover.de. Informationen zu LIFT erhalten Sie bei Dr. Lothar Koch, Leiter der Arbeitsgruppe Biofabrikation am LZH, Telefon (0511) 2788-256, l.koch@lzh.de.

Die Originalpublikationen zur Zellexpansion erhalten Sie unter:
www.ncbi.nlm.nih.gov/pubmed/21527925.
Die Originalpublikationen zum laserinduzierten Vorwärtstransfer erhalten Sie unter:
www.ncbi.nlm.nih.gov/pubmed/20673023 und hier
www.ncbi.nlm.nih.gov/pubmed/19883209

Stefan Zorn | idw
Weitere Informationen:
http://www.mh-hannover.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Unordnung kann Batterien stabilisieren
18.09.2018 | Karlsruher Institut für Technologie

nachricht Mit Nano-Lenkraketen Keime töten
17.09.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Im Focus: Schaltung des Stromflusses auf atomarer Skala

Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.

Die Grenzflächen zwischen zwei elektrisch unterschiedlich polarisierten Bereichen im Festkörper werden als ferroelektrische Domänenwände bezeichnet. In der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

Studierende organisieren internationalen Wettbewerb für zukünftige Flugzeuge

17.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

World's first passive anti-frosting surface fights ice with ice

18.09.2018 | Materials Sciences

A novel approach of improving battery performance

18.09.2018 | Materials Sciences

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics