MHH-Forscher erkunden Zell-Zell-Kommunikation

Die Abbildung zeigt, dass Listeria monocytogenes (Rot)-infizierte polarisierte Darmepithelzellen (Zellkerne in Blau) reaktive Sauerstoffradikale (Grün) produzieren. Die Bildung reaktiver Sauerstoffradikale erlaubt die indirekte Aktivierung benachbarter Epithelzellen und damit eine kooperative Wirtsabwehr. Quelle M. Hornef/MHH <br>

Meldet eine Zelle den umliegenden Zellen, wenn sie von einem Krankheitserreger infiziert wurde? Und wenn ja, wie wird diese Information weitergegeben?

Diesen Fragen sind Forscher der Medizinischen Hochschule Hannover (MHH) um Professor Dr. Mathias Hornef vom Institut für Medizinische Mikrobiologie und Krankenhaushygiene nachgegangen.

Sie konnten zeigen, dass eine Zelle, die von krankheitserregenden Bakterien infiziert wurde, diese Botschaft tatsächlich an die umliegenden Nachbarzellen weitergibt. Darüber hinaus konnten sie den Mechanismus der Zell-Zell-Kommunikation identifizieren. Ihre Ergebnisse veröffentlichten die Forscher jetzt in der Fachzeitschrift „PLoS Pathogens“. Erstautor ist Tamas Dolowschiak, PhD-Student aus Ungarn im Zentrum für Infektionsbiologie der MHH.

Die Forscher infizierten Dünndarm-Epithelzellen mit den Listeria monocytogenes. Diese Bakterien werden mit Lebensmitteln aufgenommen und können Listeriose verursachen – eine Erkrankung, die beim Menschen tödlich enden kann. Obwohl ausschließlich infizierte Zellen die Bakterien erkannten, antworteten vor allem die umliegenden nicht-infizierten Epithelzellen mit der Produktion von Botenstoffen. Die Aktivierung der umliegenden nicht-infizierten Zellen war abhängig vom Enzym NADPH Oxidase 4, das die Bildung reaktiver Sauerstoff-Intermediate (ROIs) und die Weitergabe der Information einer Infektion ermöglichte. Der Befund könnte eine Bedeutung auch für andere Infektionserkrankungen haben, da alle Bakterien durch ähnliche Mechanismen des angeborenen Immunsystems erkannt werden und sich die initiierten Signalwege ähneln.

„Im Hinblick auf zukünftige Therapien wäre es theoretisch möglich, diese Kommunikation bei Infektionen, eventuell sogar bei nicht-infektiösen Entzündungsprozessen, zu beeinflussen“, sagt Professor Hornef. Wichtig sei der Befund aber insbesondere für das grundlegende Verständnis der nach einer Infektion stimulierten zellulären Prozesse. Bei herkömmlichen Analysen wird meist die Antwort sowohl der infizierten als auch der nicht-infizierten Zellen gemeinsam analysiert. Die neuen Ergebnisse legen jetzt nahe, dass beide getrennt voneinander untersucht werden müssen, da in ihnen verschiedene Prozesse ablaufen.

Weitere Informationen erhalten Sie von Professor Dr. Mathias Hornef, Telefon (0511) 532-4540, hornef.mathias@mh-hannover.de Die Originalarbeit finden Sie unter http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1001194

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Rittal TX Colo: Das neue Rack für Colocation Data Center

Rittal TX Colo: Flexibel, skalierbar und zukunftssicher Mit der zunehmenden Digitalisierung und künftig auch immer mehr KI-Anwendungen steigt der Bedarf an Rechenleistung signifikant – und damit boomt der Colocation-Markt. Unternehmen…

Neue Dropbox Features

Nahtlose Ende-zu-Ende-Verschlüsselung, gemeinsame Dokumentenerstellung für Microsoft, erweiterte Dropbox Replay-Funktionen und vieles mehr. Dropbox Inc. (NASDAQ: DBX) kündigt heute neue Funktionen für mehr Sicherheit, bessere Organisation sowie schnellere und bequemere Freigabeprozesse…

Molekulare Fingerabdrücke jenseits der Nyquist-Frequenz

Die ultraschnelle Laserspektroskopie ermöglicht die Erfassung dynamischer Vorgänge auf extrem kurzen Zeitskalen, und macht sie damit zu einem sehr nützlichen Instrument für viele wissenschaftliche und industrielle Anwendungen. Ein großer Nachteil…

Partner & Förderer