Methanolsynthese: Einblicke in die Struktur eines rätselhaften Katalysators

Holger Ruland, Daniel Laudenschleger und Martin Muhler (von links) kooperierten für die Studie. © RUB, Katja Marquard

Das Team zeigte erstmals, dass die Zink-Komponente des aktiven Zentrums positiv geladen ist und dass der Katalysator sogar zwei kupferbasierte aktive Zentren besitzt.

„Über den Zustand der Zink-Komponente am aktiven Zentrum wurde seit Einführung des Katalysators in den 1960er-Jahren kontrovers diskutiert. Aus unseren Erkenntnissen können wir nun zahlreiche Ideen ableiten, wie wir den Katalysator in Zukunft optimieren können“, resümiert Prof. Dr. Martin Muhler, Leiter des Lehrstuhls für Technische Chemie an der RUB und Max Planck Fellow am MPI CEC.

Er kooperierte für die Arbeiten mit dem Bochumer Forscher Dr. Daniel Laudenschleger und dem Mülheimer Forscher Dr. Holger Ruland.

Methanol nachhaltig herstellen

Die Arbeiten waren eingebettet in das Projekt Carbon-2-Chem, das zum Ziel hat, Hüttengase, die bei der Stahlproduktion anfallen, für die Herstellung von Chemikalien zu nutzen und so den CO2-Ausstoß zu verringern. Auch für eine nachhaltige Methanolsynthese könnten Hüttengase als Ausgangsstoff dienen, zusammen mit elektrolytisch hergestelltem Wasserstoff.

Im Rahmen von Carbon-2-Chem untersuchte das Forschungsteam zuletzt, wie sich Verunreinigungen in Hüttengasen, die zum Beispiel in der Kokerei oder dem Hochofen entstehen, auf den Katalysator auswirken. Diese Arbeiten ermöglichten letztendlich auch die Erkenntnisse über den Aufbau des aktiven Zentrums.

Aktives Zentrum für Analyse deaktiviert

Die Forscher hatten stickstoffhaltige Substanzen – Ammoniak und Amine – als Verunreinigungen identifiziert, die als Katalysatorgift wirken. Sie deaktivieren den Katalysator, allerdings nicht dauerhaft: Verschwinden die Verunreinigungen, erholt sich der Katalysator von selbst.

Mithilfe einer einzigartigen selbst gebauten Forschungsapparatur – einer Flussapparatur mit integrierter Hochdruck-Pulseinheit – leiteten die Forscher Ammoniak und Amine über die Katalysatoroberfläche, wodurch sie das aktive Zentrum mit Zink-Komponente zeitweilig deaktivierten.

Trotz dieser Deaktivierung der Zink-Komponente konnte weiterhin eine andere Reaktion am Katalysator stattfinden: nämlich die Umsetzung von Ethen zu Ethan. Auf diese Weise wiesen die Forscher ein parallel arbeitendes zweites aktives Zentrum nach, das metallisches Kupfer beinhaltet, aber keine Zink-Komponente besitzt.

Da Ammoniak und die Amine an positiv geladene Metallionen auf der Oberfläche gebunden werden, war damit klar, dass Zink als Teil des aktiven Zentrums eine positive Ladung trägt.

Förderung

Das Bundesministerium für Bildung und Forschung förderte die Arbeiten im Rahmen des Projekts Carbon-2-Chem (Förderkennzeichen 03EK3039E).

Prof. Dr. Martin Muhler
Lehrstuhl für Technische Chemie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 26745
E-Mail: muhler@techem.rub.de

Daniel Laudenschleger, Holger Ruland, Martin Muhler: Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts, in: Nature Communications, 2020, DOI: 10.1038/s41467-020-17631-5

Media Contact

Dr. Julia Weiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer