Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Methan nutzen statt abfackeln

14.04.2016

Chemiker an der ETH Zürich und am Paul Scherrer Institut haben einen neuen direkten Weg gefunden, gasförmiges Methan in flüssiges Methanol umzuwandeln. Damit könnte es in Zukunft für die Industrie interessant werden, das Gas vermehrt zu nutzen, statt es wie bisher oft ungenutzt zu verbrennen.

Methan ist ein häufig vorkommendes und billiges Gas. Obschon es als Energieträger und als Ausgangsstoff für die chemische Industrie geeignet wäre, werden weltweit riesige Mengen davon einfach verbrannt – vor allem auf Erdölfeldern und in Raffinerien, wo es unter anderem anfällt.


Weltweit werden derzeit gosse Mengen Methan einfach verbrannt, hier auf einer Ölbohrplattform. (Bild: Colourbox)

«Auf Satellitenaufnahmen der nächtlichen Erde ist der mittlere Osten hell erleuchtet. Und dies nicht etwa, weil es dort besonders viele und grosse beleuchtete Siedlungen gibt, sondern wegen der Methanabfackelung auf den Ölfeldern», sagt Jeroen van Bokhoven, Professor für heterogene Katalyse an der ETH Zürich und Leiter des Labors für Katalyse und nachhaltige Chemie am Paul Scherrer Institut (PSI) in Villigen.

Mit ein Grund für diesen verschwenderischen Umgang mit Methan ist, dass es derzeit wirtschaftlich zu wenig rentabel ist, das Gas in die einfacher zu transportierende und reaktionsfreudigere Flüssigkeit Methanol zu überführen. Im industriellen Massstab wird diese Umwandlung derzeit in einer indirekten, aufwendigen und energieintensiven Methode praktiziert mit der Produktion von Synthesegas als Zwischenschritt.

Traum vieler Chemiker

«Die einfache direkte Umwandlung von Methan in Methanol gilt als die Traumreaktion vieler Chemiker», sagt van Bokhoven. In einer aktuellen Studie zeigen er und sein Team einen neuen Weg dazu auf. Auch die Industrie sei sehr daran interessiert, diesen häufigen und billigen Rohstoff besser zu verwerten, sagt der Katalyseforscher. Wegen der weltweit zunehmenden Förderung von Schiefergas falle zudem immer mehr Methan an.

Zumindest theoretisch ist eine direkte Umwandlung von Methan in Methanol zwar bereits heute möglich. Dies mithilfe von kristallinen kupferhaltigen Silizium-Aluminium-Verbindungen (Zeolithen) als Katalysatoren. Es handelt sich dabei um einen zyklischen Prozess, der bei verschiedenen Temperaturen abläuft: Um den Katalysator zu aktivieren sind sehr hohe Temperaturen nötig, oft bis zu 450 Grad Celsius.

Die eigentliche Reaktion von Methan mit Sauerstoff zu Methanol darf jedoch nicht bei Temperaturen stattfinden, die bedeutend höher sind als 200 Grad, da sonst das entstehende Methanol direkt verbrennen würde. Der Reaktionsbehälter muss daher immer wieder geheizt und gekühlt werden, weshalb es dieser Ansatz nie aus den Forschungslabors hinaus in die Industrie geschafft hat.

Hoher Druck statt hohe Temperatur

Van Bokhoven und seine Kollegen haben nun zeigen können, dass dieser Reaktionszyklus auch bei konstanten 200 Grad stattfinden kann. Sie nutzten dazu einen Trick und verwendeten Methan mit einem sehr viel grösseren Druck: 36 bar statt bisher üblich unter 1 bar. «Die konstante Temperatur macht den Prozess für die Industrie viel einfacher», sagt Patrick Tomkins, Masterstudent in van Bokhovens Gruppe und Erstautor der aktuellen Studie.

Mit Röntgenabsorptionsspektroskopie-Untersuchungen konnten die Forschenden ausserdem zeigen, dass die Reaktion im Katalysator bei der neuen Tieftemperatur-Hochdruck-Methode auf atomarer Ebene nicht an denselben Stellen stattfindet wie bei der bisherigen Hochtemperatur-Methode. «Durch den hohen Druck werden in den Kupfer-Zeolithen andere aktive Zentren genutzt», so van Bokhoven.

Eins zu eins in der Industrie anwendbar sei der neue Ansatz zwar noch nicht, gibt van Bokhoven zu bedenken, da dessen Ausbeute für industrielle Zwecke noch zu gering sei. Doch der Ansatz eröffne ganz neue Möglichkeiten. «Bisher erforschten Katalysewissenschaftler für diese Reaktion vor allem Kupfer-Zeolithe, weil diese in der Hochtemperatur-Methode am erfolgreichsten sind. Auch wir verwendeten für die aktuelle Studie solche Kupfer-Zeolithe».

Da die Hochdruck-Methode auf atomarer Ebene jedoch anders katalysiert werde, lohne es sich nun, auch andere Katalysatoren zu erforschen, solche die bisher gar nicht in Betracht gezogen worden seien, sagt van Bokhoven. Denn möglicherweise seien diese für die Hochdruck-Methode sogar besser geeignet. Genau dies wird der Katalysewissenschaftler und seine Mitarbeiter in weiterer Forschungsarbeit machen, mit dem Ziel sich selbst, der Wissenschaftswelt und der Industrie den Traum einer einfachen, direkten und wirtschaftlichen Umwandlung von Methan in Methanol zu erfüllen.

Literaturhinweis

Tomkins P, Mansouri A, Bozbag SE, Krumeich F, Park MB, Alayon EMC, Ranocchiari M, van Bokhoven JA: Isothermal Cyclic Conversion of Methane into Methanol over Copper-Exchanged Zeolite at Low Temperature, Angewandte Chemie International Edition, 24. März 2016, doi: 10.1002/anie.201511065 [http://dx.doi.org/10.1002/anie.201511065]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/04/methan-nut...

News und Medienstelle | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues über ein Pflanzenhormon
07.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Selbstlernende Netzwerke lassen Forscher mehr sehen
07.12.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Großes Interesse an erster Fachtagung

07.12.2018 | Veranstaltungen

Entwicklung eines Amphibienflugzeugs

04.12.2018 | Veranstaltungen

Neue biologische Verfahren im Trink- und Grundwassermanagement

04.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erstmalig in Deutschland: Erfolgreiche Bestrahlungstherapie lebensbedrohlicher Herzrhythmusstörung

07.12.2018 | Medizintechnik

Nicht zu warm und nicht zu kalt! Seminar „Thermomanagement von Lithium-Ionen-Batterien“ am 02.04.2019 in Aachen

07.12.2018 | Seminare Workshops

Seminar „Magnettechnik - Magnetwerkstoffe“ vom 19. – 20.02.2019 in Essen

07.12.2018 | Seminare Workshops

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics