Methadon: Allroundtalent gegen Hirntumoren

Das Schmerzmittel Methadon könnte zukünftig auch in der Therapie von Hirntumoren eingesetzt werden. In Kombination mit einer Chemotherapie führt Methadon zu einem Massensterben von Glioblastomzellen, wie Wissenschaftler des Universitätsklinikums Ulm in Laborexperimenten herausgefunden haben.

Sogar gegen alle bisherigen Therapien resistente Tumorzellen wurden nicht verschont. Nun sollen die neuen Erkenntnisse in klinischen Studien getestet werden. Zudem könnte sich Methadon auch gegen andere Krebsarten als wirksam erweisen. Die Deutsche Krebshilfe hat das Forschungsprojekt mit 299.000 Euro gefördert.

Methadon ist bisher vor allem als Mittel gegen körperliche Entzugserscheinungen bei Heroinabhängigkeit bekannt. In den vergangenen Jahren ist es allerdings als potenzielles Krebsmedikament in den Fokus der Wissenschaft gerückt.

Bereits 2008 konnte die Chemikerin Dr. Claudia Friesen vom Ulmer Institut für Rechtsmedizin zeigen, dass Methadon Leukämiezellen in den Zelltod treiben kann. Nun gelang Friesen und ihrem Team ein Durchbruch in der Behandlung der häufigsten bösartigen Hirntumoren bei Erwachsenen, den Glioblastomen, die derzeit als unheilbar gelten.

„Wir haben entdeckt, dass die zusätzliche Gabe von Methadon bei einer Chemotherapie die Wirkung der Zellgifte um bis zu 90 Prozent verstärkt“, erklärt Friesen. Für ihre Laborversuche machten sich die Ulmer Wissenschaftler zunutze, dass Glioblastomzellen an ihrer Oberfläche zahlreiche Moleküle aufweisen, die als Andockstelle für das Methadon dienen. Einmal an diese sogenannten Opioid-Rezeptoren angedockt, legt das Methadon einen molekularen Schalter um und die Krebszelle öffnet ihre Schleusen. Nun können die Chemotherapeutika ungehindert die Tumorzelle erobern.

Eine mit Methadon behandelte Tumorzelle nimmt jedoch nicht nur mehr Zellgift auf als ohne Methadon, sondern gibt auch viel weniger davon wieder ab. Damit wird eine weitere Verteidigungsstrategie der Krebszellen ausgehebelt: Als Abwehrreaktion auf das Zellgift pumpt sie normalerweise das Medikament schnellstmöglich wieder nach draußen.

Methadon jedoch stört die Pumpmaschinerie. So verbleibt das Krebsmedikament in großer Menge über einen langen Zeitraum in der Zelle. Dementsprechend wird auch eine geringere Menge benötigt, um die bösartige Zelle abzutöten. Für den Patienten bedeutet dies: weniger Nebenwirkungen durch die Chemotherapie und eine bessere Lebensqualität.

Umgekehrt erhöht die Chemotherapie die Zahl der Opioid-Rezeptoren auf der Krebszelle. Dadurch können auch größere Mengen Methadon andocken. Mehr Methadon wiederum bedeutet mehr Zellgift in der Zelle. Auf diese Weise schaukeln sich Krebsmedikament und Methadon gegenseitig immer weiter hoch – bis die Krebszelle den Zelltod stirbt.

Sogar Glioblastome, die sich als sehr widerstandsfähig gegen die bisherigen Therapien erwiesen haben, wurden durch die Kombination Chemotherapie und Methadon fast komplett zerstört. So könnten sogar als austherapiert geltende Patienten von den Erkenntnissen der Ulmer Wissenschaftler profitieren: „Möglicherweise können wir mit Methadon bisher resistente Tumorzellen wieder für die Chemotherapie empfänglich machen“, erläutert Friesen. Auch die berüchtigten Tumorstammzellen, die einen Rückfall auslösen können, hatten dem schlagkräftigen Duo Chemotherapie und Methadon nichts entgegenzusetzen.

Die Ergebnisse ihres Forschungsprojekts werden die Forscher nun in klinischen Studien überprüfen. Friesen: „Wir wollen Methadon als Unterstützer und Verstärker der konventionellen Chemotherapie in den klinischen Alltag einbringen. Methadon erhöht den Therapieerfolg signifikant, überwindet Resistenzen und greift gesunde Zellen nicht an.“ Ihre Erkenntnisse ließen sich auch auf andere Krebsarten wie Bauchspeicheldrüsenkrebs oder bestimmte Formen von Brust-, Eierstock- und Prostatakrebs übertragen, so Friesen weiter. Bis dahin sei aber noch viel Forschungsarbeit nötig.

Interviewpartner auf Anfrage.

Hintergrundinformation: Krebsforschung

Fortschritte in der Krebsforschung haben dazu beigetragen, neue und immer wirkungsvollere Therapien gegen Krebs zu entwickeln und bestehende Behandlungsansätze weiter zu optimieren. Diese Erfolge sind auch der Deutschen Krebshilfe zu verdanken – die gemeinnützige Organisation ist der bedeutendste private Förderer der Krebsforschung in Deutschland. In den letzten Jahren investierte die Deutsche Krebshilfe jährlich rund 35 bis 40 Millionen Euro in die onkologische Forschung. Ziel der Forschungsförderung der Deutschen Krebshilfe ist es, im Sinne einer optimalen Patientenversorgung vielversprechende Ergebnisse aus der Forschung schnell und effizient in die klinische Prüfung und Anwendung zu bringen sowie die Überlebenschancen und die Lebensqualität krebskranker Menschen stetig zu verbessern.

Projektnr.: 109035

Weitere Informationen:

http://www.krebshilfe.de

Media Contact

Dr. med. Svenja Ludwig Deutsche Krebshilfe e. V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer