Metastabiler Supraleiter durch Ionenaustausch: Chemiker der TUD entdecken molekulare Scharniere

Bi12Rh3Bi2 – Kristall (ca. 50 Mikrometer groß) nach dem Ionenaustausch, Aufnahme mit dem Elektronenmikroskop Grafik von Martin Kaiser

In Technik und Alltag finden Ionenaustauscher breite Anwendung, z. B. bei der Wasserentkalkung. Dort werden Kalziumionen gebunden und im Gegenzug Natriumionen freigesetzt. Als Austauscher eignen sich Materialien mit großen spezifischen Oberflächen wie Harze, Zeolithe oder Schichtsilikate.

Die Wissenschaftler der Professur für Anorganische Chemie II um Prof. Michael Ruck haben jetzt gezeigt, dass auch kompakte kristalline Strukturen intermetallischer Verbindungen, denen eigentlich die Diffusionswege für einen effizienten Stofftransport fehlen, Ionen austauschen können. Ihnen ist der vollständige Austausch der Chloridionen durch Bismutatome in Bi12Rh3Cl2-Kristallen gelungen.

Auf das unerwartete Phänomen wurden die Dresdner Chemiker bei Forschungen an Subhalogeniden des Bismuts aufmerksam. Subhalogenide sind Verbindungen mit Bereichen direkter Metall-Metall-Bindungen neben den für Halogenide typischen ionischen Bindungen. In einem Versuch sollten Halogenatome herausgelöst werden, ohne die intermetallischen Bereiche zu zerstören.

Das gelang und hatte einen überraschenden Nebeneffekt: Die entstandenen Leerstellen in der Kristallstruktur wurden durch Bismut-Atome aufgefüllt, die aus einer kaum wahrnehmbaren chemischen Zersetzung der Kristalloberfläche stammten. Dabei entstand die intermetallische Verbindung Bi12Rh3Bi2, welche die gleiche Struktur wie der Ausgangsstoff besitzt. Die Morphologie des Kristalls blieb ebenfalls unverändert.

Kristallographische Untersuchungen zeigten, dass Stränge im intermetallischen Netzwerk lediglich etwas stärker gegeneinander gedreht waren als vor dem Austausch. Die Grundlage für diese Drehung bilden Baugruppen, welche die Stränge miteinander verbinden und als molekulare Scharniere wirken. Eben diese öffnen während des Austausches Diffusionspfade, die ein dreidimensionales Transportsystem ergeben und so den Austausch von Chloridionen und Bismutatomen ermöglichen.

Dieser Austausch ist auch elektronisch von Interesse. Trotz des kaum veränderten intermetallischen Netzwerks hat das neue Material deutlich andere elektronische Eigenschaften: Bei der Ausgangsverbindung handelt es sich um ein anisotropes Metall, welches den elektrischen Strom nur entlang bestimmter Richtungen leitet. Bei der erhaltenen intermetallischen Verbindung sind die leitfähigen intermetallischen Stränge durch die zusätzlichen Bismut-Atome untereinander elektrisch kontaktiert, sodass ein dreidimensionales Metall mit supraleitender Eigenschaft entstanden ist.

Die Entdeckung der Wissenschaftler der TU Dresden ermöglicht es, bislang unbekannte und schwer zugängliche Verbindungen wie z.B. Hochtemperaturphasen und metastabile Verbindungen herzustellen. Dabei gelingt eine erheblich bessere Kontrolle über die Änderungen der physikalischen Eigenschaften. Mit dieser Methode wollen die Forscher künftig gezielt neue Materialeigenschaften einstellen. Besonders im Fokus stehen dabei Supraleiter für einen verlustfreien Stromtransport und Topologische Isolatoren, die Anwendung in der Spintronic und in Quanten-Computern finden können.

Der komplette Artikel ist unter dem Titel „Topochemische Pseudomorphose eines Chlorids in ein Bismutid“ erschienen und steht im Internet zur Verfügung:
http://dx.doi.org/10.1002/ange.201309460

Informationen für Journalisten
Martin Kaiser, Tel. 0351 463-33649
martin.kaiser@chemie.tu-dresden.de

www.tu-dresden.de

Media Contact

Kim-A. Magister idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer