Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Menschliches Hirn aus dem Labor

29.08.2013
GEHIRNMODELL AUS DER ORGANKULTUR

ERSTMALS GELANG ES FORSCHERN, IN EINER ORGANKULTUR FRÜHE STADIEN DER MENSCHLICHEN GEHIRNENTWICKLUNG NACHZUBILDEN

Stammzellforscher Dr. Jürgen Knoblich, Gruppenleiter und stellvertretender Direktor am Institut für Molekulare Biotechnologie (IMBA) der österreichischen Akademie der Wissenschaften (ÖAW) und seinem Team ist es erstmals gelungen, aus Stammzellen die frühen Entwicklungsstadien eines menschlichen Gehirns nachzubilden. Die Erkenntnisse der Forscher liefern wichtige Einblicke in die frühe Gehirnentwicklung beim Menschen und erlauben es erstmalig, Erbkrankheiten des Gehirns an einer menschlichen Organkultur zu untersuchen.

Das menschliche Gehirn ist das komplexeste Organ, das die Natur hervorgebracht hat. Da sich die menschliche Gehirnentwicklung grundsätzlich von der in Tieren unterscheidet, ist es schwierig, die Ausbildung dieses faszinierenden Organs in Tiermodellen zu untersuchen. Wiener Forschern ist es nun gelungen, die frühen Stadien der menschlichen Gehirnentwicklung in einem speziell entwickelten dreidimensionalen Organkultursystem nachzubilden. Für die Herstellung dieser sogenannten "mini brains" verwendeten die Forscher embryonale Stammzellen und induzierte pluripotente Stammzellen (iPS Zellen), die aus Patientengewebe gewonnen wurden. Sie konnten zeigen, dass Stammzellen die unterschiedlichen Zelltypen des Gehirns ausbilden und dass diese Zellen sich in überraschend exakter und präziser Weise so organisieren, wie im embryonalen Gehirn. Durch ein spezielles Kulturverfahren gelang es, die frühen Entwicklungsstadien des Großhirns aber auch anderer Gehirnstrukturen, wie des Hippokampus, nachzubilden. Da iPS Zellen auch aus Patienten mit Gendefekten erzeugt werden können, erlauben diese Arbeiten erstmals, menschliche Erbkrankheiten in einer Organkultur zu untersuchen. Die Forscher gewinnen damit wichtige Einblicke in die entscheidenden Prozesse der menschlichen Gehirnentwicklung und konnten untersuchen, wie Erbkrankheiten diese Prozesse stören.

UNGEAHNTE MÖGLICHKEITEN

Normalerweise werden wissenschaftliche Versuche zuerst in Zellkultur und anschließend in Tiermodellen, wie der Maus oder der Fliege, durchgeführt. Grundlegende Unterschiede in der Gehirnentwicklung machen es aber schwer, Erkenntnisse in diesem Bereich vom Tier auf den Menschen zu übertragen. Die Stammzellforschung eröffnet hierbei völlig neue und bisher ungeahnte Möglichkeiten. "Wie unsere Ergebnisse zeigen, haben menschliche Stammzellen bemerkenswerte Fähigkeiten, sich selbst zu organisieren. Die Zellen bilden, wenn man sie sozusagen sich selbst überlässt, überraschend komplexe Strukturen aus, anhand derer man auch die Aktivität der Nervenzellen und die Kommunikation zwischen den Zellen studieren kann. So ist es anderen Forschern bereits gelungen, darm-, oder netzhautähnliche Strukturen nachzubilden", weiß Jürgen Knoblich, Letztautor der Studie. "Derartige Modelle haben sehr großes Potenzial für die Erforschung von Krankheiten und Entwicklung von Medikamenten."

BEDEUTUNG FÜR DIE ERFORSCHUNG VON GEHIRNDEFEKTEN

Die Forscher haben nicht nur gehirnähnliche Organoide gezüchtet, sondern diese auch bereits als Modelle für die Nachbildung von Gehirndefekten genutzt. Dabei stehen sogenannte Mikrozephalien im Vordergrund - aufgrund eines Defekts in frühen Phasen der Gehirnentwicklung geht diese Erkrankung in der Regel mit geistigen Behinderungen aufgrund eines deutlich zu kleinen Gehirns einher. In ihren früheren Arbeiten konnten die IMBA Wissenschafter bereits zeigen, dass es in diesen jungen Stadien der Gehirnentwicklung auf die Richtung ankommt, in der sich die Zellen teilen. Denn der ungehinderte Nachschub von Neuronen aus dem Stammzell-Reservoir und ihre korrekte Positionierung am Bestimmungsort in der Hirnrinde sind wesentliche Voraussetzungen für die Gehirnentwicklung. Mikrozephalien konnten zwar bereits im Mausmodell erforscht werden, jedoch führen dieselben Gendefekte in diesem Fall nicht zu denselben Krankheitsbildern wie im Menschen. "Mithilfe unseres neu entwickelten Systems konnten wir Mikrozephalien aus menschlichen Stammzellen erfolgreich in der Kultur nachstellen. In Zukunft möchten wir auch andere Krankheiten, die mit entwicklungsbiologischen Störungen des Gehirns in Zusammenhang stehen könnten - etwa Autismus oder Schizophrenie - in der Kultur nachbauen und erforschen", fasst Jürgen Knoblich das Potenzial seiner Ergebnisse zusammen.

INNOVATIVE KULTURSYSTEME

Das neue 3D Kultursystem hat eine große Bedeutung für die Zukunft der Stammzellforschung: Zum einen wird dadurch die Zahl der Tierversuche verringert, und zum anderen ist es nun möglich, die Ergebnisse dieser Versuche besser auf den Menschen zu übertragen. "Der entscheidende Vorteil des neuen Systems sind optimierte Kulturbedingungen, welche die Übereinstimmung zwischen Kultur und tatsächlicher Gehirnentwicklung entscheidend verbessert haben", erläutert Madeline Lancaster, Erstautorin der Studie und Post-Doc bei Jürgen Knoblich. "Nach acht bis zehn Tagen entsteht in der Kultur neuronales Gewebe, nach 20 bis 30 Tagen haben sich die Zellen zu unterschiedlichen Hirnregionen weiterentwickelt. Im Durchschnitt können die Gehirn-Organoide die Entstehung von Gehirnstrukturen bis in die neunte Schwangerschaftswoche imitieren", erklärt Madeline Lancaster. Da in späteren Phasen die Sauerstoffversorgung durch die Blutbahn erfolgt, wurde zu diesem Zeitpunkt das Limit der Modelle erreicht. Blutgefäße konnten in den Modellen noch nicht nachgebildet werden.

RELEVANZ FÜR DIE PHARMAINDUSTRIE

Die Nachbildung menschlicher Gehirnstrukturen in Kultursystemen könnte in Zukunft auch in der pharmazeutischen und chemischen Industrie von Bedeutung sein. So ermöglichen die Kulturen etwa die Testung von Medikamenten gegen Gehirndefekte und andere neurologische Erkrankungen und erlauben, die Auswirkungen von Chemikalien auf frühe Stadien der Gehirnentwicklung zu untersuchen.

Originalpublikation in Nature: M. A. Lancaster, M. Renner, C.-A. Martin, D. Wenzel, L. S. Bicknell, M. E. Hurles, T. Homfray, J. S. Penninger, A. P. Jackson & J. A. Knoblich. Cerebral organoids model human brain development and microcephaly. Nature, doi: 10.1038/nature12517

Jürgen Knoblich:
Jürgen Knoblich, geboren 1963 in Memmingen, arbeitet seit 1997 in Österreich. Er ist seit Anfang 2004 Senior Scientist am IMBA und wurde Anfang 2005 zum stellvertretenden wissenschaftlichen Leiter ernannt. Nach seinem Studium der Biochemie an der Universität Tübingen und Molekularbiologie am University College London ging Jürgen Knoblich zunächst an das Max-Planck-Institut für Entwicklungsbiologie und wechselte 1990 an das Friedrich-Miescher-Labor der Max-Planck-Gesellschaft. Von 1994 bis 1997 war er annähernd vier Jahre als EMBO- und Howard Hughes Medical Institute Post-Doc-Fellow an der University of California tätig. Im September 1997 kehrte er als Gruppenleiter an das Institut für Molekulare Pathologie (IMP) nach Europa zurück.
Madeline Lancaster:
Madeline Lancaster erwarb ihr Doktorat im Jahr 2009 in San Diego an der University of California, im Labor von Professor Joseph Gleeson. Im Jahr 2010 wechselte die gebürtige Amerikanerin als Marie Curie postdoctoral fellow in das Team von Jürgen Knoblich, wo sie an der Differenzierung von neuronalen Stammzellen forscht.
IMBA:
Das IMBA - Institut für Molekulare Biotechnologie ist ein international anerkanntes Forschungsinstitut mit dem Ziel, molekulare Prozesse in Zellen und Organismen zu erforschen und Ursachen für die Entstehung humaner Erkrankungen aufzuklären. Unabhängige wissenschaftliche Arbeitsgruppen arbeiten an biologischen Fragestellungen aus den Bereichen Zellteilung, Zellbewegung, RNA-Interferenz und Epigenetik, ebenso wie an unmittelbaren medizinischen Fragestellungen aus den Gebieten Onkologie, Stammzellforschung und Immunologie. Das IMBA ist eine 100 % Tochtergesellschaft der ÖAW.

www.imba.oeaw.ac.at

ÖAW:
Die Österreichische Akademie der Wissenschaften (ÖAW) ist die führende Trägerin außeruniversitärer akademischer Forschung in Österreich. Die 28 Forschungseinrichtungen betreiben anwendungsoffene Grundlagenforschung in gesellschaftlich relevanten Gebieten der Natur-, Lebens- und Technikwissenschaften sowie der Geistes-, Sozial- und Kulturwissenschaften.

www.oeaw.ac.at

Bildmaterial zum Download finden Sie unter:
http://de.imba.oeaw.ac.at/Presse-Foto
Wissenschaftlicher Kontakt:
Jürgen Knoblich
IMBA - Institut für Molekulare Biotechnologie Dr. Bohr-Gasse 3
1030 Wien
T +43 / 1 / 790 44 - 4800
E juergen.knoblich@imba.oeaw.ac.at
Allgemeine Anfragen:
Elena Bertolini
Communications Manager
IMBA - Institut für Molekulare Biotechnologie Dr. Bohr-Gasse 3
1030 Wien
T +43 / 1 / 797 30 - 3824
E elena.bertolini@imba.oeaw.ac.at
Aussendung:
PR&D - Public Relations für Forschung & Bildung Mariannengasse 8
1090 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Judith Sandberger | PR&D
Weitere Informationen:
http://www.imba.oeaw.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics