Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Menschliche Proteinfabriken in 3D - Einblicke ins Innere menschlicher Zellen auf Nanoebene

27.08.2010
Wer in der Zelle für die Bildung von Proteinen (Eiweißen) zuständig ist, ist dank der zellbiologischen Forschung bereits bekannt. Aber wie diese Proteinfabriken (Ribosomen) innerhalb der Zelle organisiert sind, ist bisher nicht umfassend erforscht.

Kürzlich ist es Wissenschaftlern am Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München gelungen, das Innenleben einer intakten menschlichen Zelle mittel Kryo-Elektronentomographie dreidimensional abzubilden. So konnten sie zeigen, wo sich die Ribosomen in der Zelle befinden und wie sie angeordnet sind. In der Vergangenheit war das nur bei Bakterienzellen möglich. Die Ergebnisse wurden jetzt in Molecular Cell veröffentlicht.

Menschliche Zellen sind sehr komplexe Gebilde mit vielen verschiedenen Bestandteilen. Ein sehr wichtiger zellulärer Bestandteil sind die Ribosomen: Sie sind als Proteinfabriken der Zelle für die Herstellung von Proteinen (Proteinbiosynthese) zuständig. Den Bauplan dafür liefert unsere Erbinformation, die DNA.

Da die Ribosomen für diesen Prozess so bedeutsam sind, waren sie schon oft Gegenstand der Strukturforschung. Bisher konnten die Wissenschaftler lediglich einzelne, isolierte Ribosomen betrachten. Ribosomen treten in der lebenden Zelle jedoch meist wie an einer Perlschnur aufgereiht in sogenannten Polyribosomen auf. Eine isolierte Betrachtung genügt aber nicht, um vollständig zu verstehen, wie die Proteinproduktion innerhalb der Zelle abläuft und wie sie in die komplexen zellulären Strukturen und Prozesse eingebunden ist. Daher ist es notwendig, die Ribosomen in ihrer „natürlichen Umgebung“, dem Zellinneren, abzubilden und zu untersuchen. Möglich macht dies die Kryo-Elektronentomographie.

Mit dieser Technik, die maßgeblich in der Abteilung Molekulare Strukturbiologie unter der Leitung von Wolfgang Baumeister entwickelt wurde, können dreidimensionale zelluläre Strukturen abgebildet und betrachtet werden. Die Zelle wird quasi schockgefroren, sodass ihre räumliche Struktur erhalten bleibt und sie in ihren Eigenschaften nicht verändert wird. Dann nehmen die Forscher mit dem Elektronenmikroskop aus verschiedenen Blickwinkeln zweidimensionale Bilder der Zelle auf, aus denen sie schließlich ein dreidimensionales Bild rekonstruieren. Mit Hilfe dieser Methode konnten die MPIB-Wissenschaftler jetzt zum ersten Mal eine dreidimensionale Abbildung einer intakten menschlichen Zelle erzeugen. Das ist die Fortsetzung früherer Arbeiten, in denen dem Team um Wolfgang Baumeister und F.-Ulrich Hartl bereits die räumliche Analyse von Polyribosomen des Bakteriums E. coli (Brandt et al., Cell 2009) und von inaktivierten Ribosomen in einer ganzen E. coli Zelle (Ortiz et al., JCB 2010) gelungen ist.

Die Forscher fanden jetzt heraus, wie die Ribosomen innerhalb der menschlichen Zelle positioniert sind: Ihre Anordnung ist keinesfalls zufällig, sondern sorgt dafür, dass neu entstandene, noch ungefaltete Proteine großen Abstand voneinander einhalten. „Wir konnten eine ähnliche Positionierung schon bei bakteriellen Zellen beobachten, was darauf schließen lässt, dass die Ribosomen bei allen Lebewesen auf nahezu gleiche Weise angeordnet sind“, erklärt Florian Brandt, Wissenschaftler am MPIB. „Diese räumliche Organisation der Ribosomen könnte darauf ausgerichtet sein, ein Verklumpen und eine daraus resultierende Fehlfaltung neu entstandener Proteine zu verhindern.“

Die Arbeit der MPIB-Wissenschaftler stellt einen weiteren, wichtigen Schritt für die Zellbiologie dar, denn sie hilft dabei, die Verteilung der zellulären Bestandteile und damit die räumliche Organisation der gesamten Zelle besser zu verstehen. „Auch könnte in Zukunft interessant sein“, so Brandt, „wie sich diese Organisation zum Beispiel in alternden und kranken Zellen ändert und welchen Einfluss das auf die Gesamteffizienz der Proteinproduktion und –faltung haben könnte." [UD]

Originalveröffentlichung:
Florian Brandt, Lars-Anders Carlson, F.-Ulrich Hartl, Wolfgang Baumeister and Kay Grünewald:
The three-dimensional organization of polyribosomes in intact human cells. Molecular Cell,

August 27, 2010.

Kontakt:
Prof. Dr. Wolfgang Baumeister
Molekulare Strukturbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-mail: baumeist@biochem.mpg.de
Dr. Kay Grünewald
The Division of Structural Biology
University of Oxford
The Henry Wellcome Building for Genomic Medicine
Roosevelt Drive
Oxford, OX3 7BN
United Kingdom
E-mail: kay@strubi.ox.ac.uk
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. ++49/89-8578-2824
E-mail: konschak@biochem.mpg.de

Anja Konschak | idw
Weitere Informationen:
http://www.biochem.mpg.de
http://www.biochem.mpg.de/news/index.html
http://www.biochem.mpg.de/baumeister/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Woher Muskeln wissen, wie spät es ist
21.08.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Bienen brauchen es bunt
20.08.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Superauflösende Mikroskopie - Neue Markierungssonden im Nanomaßstab

21.08.2018 | Physik Astronomie

Browser-Plugin für mehr Internet-Sicherheit

21.08.2018 | Informationstechnologie

Aussicht auf neue Therapie bei rheumatoider Arthritis

21.08.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics