Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Melanom-förderndes Gen entdeckt

10.07.2012
Der schwarze Hautkrebs, auch Melanom genannt, ist besonders aggressiv und kommt in der Schweiz zunehmend häufiger auf.

Trotz intensiver Forschung gibt es jedoch bis heute keine Therapie. Forschende der Universität Zürich haben nun ein Gen entdeckt, das eine zentrale Rolle spielt beim schwarzen Hautkrebs: Unterdrückt man dieses Gen, verhindert dies bei Mäusen die Entstehung eines Melanoms und dessen Ausbreitung. Diese Entdeckung könnte den Weg zu neuen Therapieformen ebnen.


Der Stammzellfaktor Sox10 (rot) ist aktiv in Tumorgeweben von Melanompatienten und für die Krebsentstehung und Verbreitung essentiell.
Olga Shakhova

Bis vor kurzem ging man davon aus, dass ein Tumor aus vielen gleichwertigen Zellen besteht, die sich alle bösartig vermehren und so zum Tumorwachstum beitragen können. Laut einer neueren Hypothese könnte ein Tumor aber auch aus bösartigen Krebsstammzellen und anderen, weniger aggressiven Tumorzellen zusammengesetzt sein.

Normalerweise sind Stammzellen für den Aufbau von Organen zuständig. Ganz ähnlich können sich Krebsstammzellen teilen und sich zu anderen Tumorzellen entwickeln, um so den Tumor zu bilden. Eine effiziente Tumortherapie müsste somit vor allem Krebsstammzellen bekämpfen. Deshalb wollten Stammzellforscher um Prof. Sommer von der Universität Zürich wissen, ob Mechanismen, die für normale Stammzellen wichtig sind, auch in Krebsstammzellen eine Rolle spielen.

Steuergen im Tumor entdeckt

Melanomzellen sind entartete Hautpigmentzellen, die während der Embryonalentwicklung von so genannten Neuralleistenstammzellen gebildet werden. Das Team um Prof. Sommer untersuchte gemeinsam mit Dermatologen und Pathologen, ob in menschlichem Tumorgewebe Zellen mit Merkmalen dieser speziellen Stammzellen vorhanden sind. «Dies war tatsächlich der Fall. Wir konnten das anhand zahlreicher Biopsien von Melanompatienten nachweisen», sagt Sommer. Insbesondere ist in allen untersuchten Tumorgeweben ein Gen hoch aktiv, das in normalen Zellen sozusagen das Stammzellprogramm steuert. Dieses «Sox10» genannte Gen ist für die Zellteilung und das Überleben von Stammzellen essentiell.

Genunterdrückung verhindert Krebs

In einem nächsten Schritt testeten die Zürcher Forschenden wie «Sox10» in menschlichen Melanomzellen funktioniert. Sie stellten fest, dass dieses Gen auch in Krebszellen ein Stammzellprogramm kontrolliert und für die Zellteilung benötigt wird. Um diese Befunde in einem lebenden Organismus zu festigen, benutzten die Forschenden schliesslich eine Maus. Diese trägt ähnliche genetische Mutationen in sich, wie man sie im menschlichen Melanom findet und entwickelt deshalb spontan schwarzen Hautkrebs. Erstaunlicherweise verhinderte die Unterdrückung von «Sox10» in diesem Tiermodell vollständig die Bildung wie auch Verbreitung von Krebs.

«Unsere Forschungsarbeit zeigt auf, dass ein Tumor vermutlich therapiert werden könnte, indem man seine Stammzellen bekämpft», folgert Sommer. Die Ergebnisse verdeutlichen auch, dass solche Untersuchungen vor allem durch die enge Zusammenarbeit und die bewusst genutzten Synergien zwischen Grundlagenforschern und Klinikern zum Erfolg führen können.

Literatur:
Olga Shakhova, Daniel Zingg, Simon M. Schaefer, Lisette Hari, Gianluca Civenni, Jacqueline Blunschi, Stéphanie Claudinot, Michal Okoniewski, Friedrich Beermann, Daniela Mihic-Probst, Holger Moch, Michael Wegner, Reinhard Dummer, Yann Barrandon, Paolo Cinelli, and Lukas Sommer. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nature Cell Biology. 8 July, 2012. Doi: 10.1038/ncb2535

Kontakt:

Prof. Lukas Sommer
Anatomisches Institut
Universität Zürich
Tel. +41 44 635 53 50
E-Mail: lukas.sommer@anatom.uzh.ch

Beat Müller | Universität Zürich
Weitere Informationen:
http://www.uzh.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Versteckte Dynamik in neuronalen Netzwerken entdeckt
16.07.2019 | Forschungszentrum Jülich

nachricht Internationales Forschungsteam entwickelt Programm zur Vorhersage neuer Wirkstoffe
16.07.2019 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Megakaryozyten als „Türsteher“ und Regulatoren der Zellmigration im Knochenmark

In einer neuen Studie zeigen Wissenschaftler der Universität Würzburg und des Universitätsklinikums Würzburg, dass Megakaryozyten als eine Art „Türsteher“ auftreten und so die Eigenschaften von Knochenmarksnischen und die Dynamik der Zellmigration verändern. Die Studie wurde im Juli im Journal „Haematologica“ veröffentlicht.

Die Hämatopoese ist der Prozess der Bildung von Blutzellen, der überwiegend im Knochenmark auftritt. Das Knochenmark produziert alle Arten von Blutkörperchen:...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet.

Zurzeit ist Niob das Material der Wahl, um supraleitende Hochfrequenzkavitäten zu bauen. So werden sie für Projekte wie bERLinPro und BESSY-VSR eingesetzt,...

Im Focus: Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

Schwarze Löcher und unser Navi im Kopf: Wissenschaftsshow im Telekom Dome in Bonn

11.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Versteckte Dynamik in neuronalen Netzwerken entdeckt

16.07.2019 | Biowissenschaften Chemie

Fraunhofer: What’s next?

16.07.2019 | Messenachrichten

GFOS auf der Zukunft Personal Europe: Workforce Management weitergedacht

16.07.2019 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics