Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus zur Reparatur von verklumpten Proteinen aufgeklärt

19.11.2012
Heidelberger Wissenschaftler entschlüsseln die Funktion bestimmter molekularer Chaperone

Verklumpte Proteine können mit Hilfe zellulärer Reparatursysteme aufgelöst werden – ein Prozess, der für das Überleben von Zellen gerade unter Stressbedingungen von vitaler Bedeutung ist. Der fundamentale Mechanismus zur Auflösung von Proteinaggregaten, bei dem bestimmte molekulare Chaperone zum Einsatz kommen, ist jetzt von Heidelberger Wissenschaftlern entschlüsselt worden.


Mechanismus der Proteinaggregatauflösung durch Hsp70/Hsp100 Kooperation. Das ringförmige Hsp100 liegt in zwei Strukturzuständen vor, einem inaktiven und einem aktivierten Zustand. Ein molekularer Schalthebel hält das Hsp100 Chaperon im inaktiven Zustand. Durch Interaktion mit Hsp70 wird die Stellung des Schalters verändert und das Hsp100 Chaperon aktiviert. In diesem Zustand kann es Proteinstränge aus dem Aggregat herausziehen. Die Aktvierung von Hsp100 ist nicht von Dauer, so dass das Chaperon nach der Aggregatauflösung wieder in den inaktiven Zustand zurückfällt.

Abbildung: ZMBH

Beteiligt waren Forscher des Zentrums für Molekulare Biologie der Universität Heidelberg und des Deutschen Krebsforschungszentrums, die mit Experten des Heidelberger Instituts für Theoretische Studien zusammengearbeitet haben. Die Forschungsergebnisse wurden in zwei zeitgleich erscheinenden Arbeiten in der Fachzeitschrift „Nature Structural & Molecular Biology“ veröffentlicht.

Proteine bestehen aus langen Ketten aufeinanderfolgender Aminosäuren und üben lebensnotwendige Funktionen in jeder Zelle aus. Um Funktionalität zu erreichen, muss zunächst jede Aminosäurekette eine bestimmte dreidimensionale Struktur einnehmen – sie muss sich falten. Eine Änderung der Wachstumsbedingungen wie zum Beispiel ein Anstieg der Umgebungstemperatur kann dazu führen, dass Proteine ihre Struktur verlieren und sich entfalten. Dabei besteht die Gefahr, dass entfaltete Proteinketten miteinander verklumpen und Proteinaggregate bilden. „Kommt es zur Bildung solcher Aggregate, hat dies den Funktionsverlust der Proteine zur Folge und kann zum Zelltod führen, wie dies bei neurodegenerativen Erkrankungen, etwa Alzheimer und Parkinson, oder auch bei Alterungsvorgängen der Fall ist“, so Prof. Dr. Bernd Bukau, der Direktor des Zentrums für Molekulare Biologie der Universität Heidelberg (ZMBH) ist und zugleich am Deutschen Krebsforschungszentrum (DKFZ) forscht.

Eine Verklumpung muss jedoch nicht unbedingt den Endpunkt im Lebenszyklus eines Proteins darstellen. „Zellen besitzen Reparatursysteme für beschädigte Proteine, sogenannte molekulare Chaperone, die sogar aggregierte Proteine auflösen und zurückfalten können“, erläutert Privatdozent Dr. Axel Mogk, der ebenfalls dem ZMBH und dem DKFZ angehört. Die „Reparatur“ wird durch ein kooperierendes Team von zwei Chaperonen – der französische Ausdruck für „Anstandsdame“ – mit den Bezeichnungen Hsp70 und Hsp100 bewerkstelligt. Die Heidelberger Wissenschaftler konnten nun zeigen, dass die Aktivität des Hsp100-Chaperons durch einen eingebauten molekularen Schalter reguliert wird.

Dieser Schalter ist zunächst so positioniert, dass er den Energieverbrauch, das heißt die ATP-Hydrolyse, und damit die Aktivität des Hsp100-Chaperons drosselt. Das kooperierende Hsp70-Protein verändert die Stellung des Schalters und aktiviert Hsp100 direkt am Proteinaggregat. In diesem Zustand läuft der „Motor“ des ringförmigen Hsp100-Proteins auf vollen Touren, entwickelt seine komplette Leistungsfähigkeit und kann einzelne Ketten aus dem Aggregat herausziehen. Das herausgelöste, entfaltete Protein hat danach wieder die Chance, die Faltung von vorne zu beginnen. Die Heidelberger Forschungsergebnisse zeigen außerdem, dass die Aktivitätskontrolle von Hsp100 durch den eingebauten Schalter von essentieller Bedeutung für diese komplizierte Proteinmaschine ist, da der Regulationsverlust in hyperaktiven – also permanent aktivierten – Hsp100-Proteinvarianten zum Zelltod führt.

Die Forschungsarbeiten sind Teil der DKFZ-ZMBH-Allianz, der strategischen Zusammenarbeit des Deutschen Krebsforschungszentrums und des Zentrums für Molekulare Biologie der Universität Heidelberg. Am Heidelberger Institut für Theoretische Studien (HITS) werden neue theoretische Ansätze zur Interpretation der rasch wachsenden Menge experimenteller Daten entwickelt.

Originalveröffentlichungen:

F. Seyffer, E. Kummer, Y. Oguchi, J. Winkler, M. Kumar, R. Zahn, V. Sourjik, B. Bukau & A. Mogk: Hsp70 proteins bind Hsp100 regulatory M domains to activate AAA+ disaggregase at aggregate surfaces, Nature Structural & Molecular Biology, 18 November 2012, doi: 10.1038/nsmb.2442

Y. Oguchi, E. Kummer, F. Seyffer, M. Berynskyy, B. Anstett, R. Zahn, R.C. Wade, A. Mogk & B. Bukau: A tightly regulated molecular toggle controls AAA+ disaggregase, Nature Structural & Molecular Biology, 18 November 2012, doi: 10.1038/nsmb.2441

Kontakt:

Prof. Dr. Bernd Bukau, Privatdozent Dr. Axel Mogk
Zentrum für Molekulare Biologie der Universität Heidelberg
Telefon (06221) 54-6850, direktor@zmbh.uni-heidelberg.de
Telefon (06221) 54-6863, a.mogk@zmbh.uni-heidelberg.de
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Im Visier: die „kleinen Geschwister“ der Proteine
12.11.2018 | Technische Universität Berlin

nachricht Reparaturdefekt führt zu Chaos im Erbgut
12.11.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Forschungsschiff Polarstern startet Antarktissaison

Wie sieht es unter dem Schelfeis des abgebrochenen Riesen-Eisbergs A68 aus?

Am Samstag, den 10. November 2018 verlässt das Forschungsschiff Polarstern seinen Heimathafen Bremerhaven Richtung Kapstadt, Südafrika.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

Mehrwegbecher-System für Darmstadt: Prototyp-Präsentation am Freitag, 16. November, 11 Uhr

09.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein magnetisches Gedächtnis für den Computer

12.11.2018 | Energie und Elektrotechnik

Autonomes Parken wird erprobt

12.11.2018 | Informationstechnologie

Multicopter und Satelliten für den Rettungseinsatz

12.11.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics