Mechanismus zur Evolution der ersten Stoffwechselprozesse entdeckt: Reaktionslawine am Ursprung des Lebens

Dieser „Urstoffwechsel“ könnte in vulkanisch-hydrothermalen Strömungskanälen stattgefunden haben. Welche Reaktionen jedoch die Evolution dieses Urstoffwechsels auslösten, war bisher unklar.

Nun zeigten Wissenschaftler der TU München (TUM) im Laborversuch erstmals Mechanismen, mit denen wenige Biomoleküle lawinenartig neue Produkte hervorbringen und so einen selbst-expandierenden Stoffwechsel in Gang setzen können. Über ihre Ergebnisse berichtet die Fachzeitschrift „Chemistry – A European Journal“.

Vulkanisch-hydrothermale Strömungskanäle bieten eine chemisch einzigartige Umgebung, die auf den ersten Blick lebensfeindlich scheint. Es handelt sich um Risse in der Erdkruste, durch die Wasser strömt, das Vulkangase enthält und diverse Mineralien kontaktiert. Und doch – gerade in dieser extremen Umgebung könnten sich jene beiden Mechanismen entwickelt haben, die allem Leben zu Grunde liegen: Vervielfältigung von Biomolekülen (Reproduktion) und Entwicklung neuer Biomoleküle auf Basis der zuvor entstandenen Biomoleküle (Evolution).

Am Anfang dieser „Kettenreaktion“, die letztlich zur Entstehung zellulärer Lebewesen führte, stehen dabei nur einige wenige Aminosäuren, die aus den vulkanischen Gasen unter Katalyse durch die Mineralien gebildet werden. Ähnlich einem Dominostein, der eine ganze Lawine nach sich zieht, regen diese ersten Biomoleküle dann sowohl ihre eigene Vervielfältigung als auch die Produktion ganz neuer Biomoleküle an. „Auf diese Weise entsteht das Leben nach von Anfang an feststehenden Gesetzen der Chemie zwangsläufig und in einer vorgegebenen Richtung“, erklärt Günter Wächtershäuser, Honorarprofessor für evolutionäre Biochemie an der Universität Regensburg. Er hat den Mechanismus des sich selbst erzeugenden Urstoffwechsels theoretisch entwickelt – ein Laborbeweis jedoch fehlte bislang.

Nun gelang es Wissenschaftern um Claudia Huber und Wolfgang Eisenreich am Lehrstuhl für Biochemie der TU München, in enger Zusammenarbeit mit Wächtershäuser erstmals die Möglichkeit eines solchen, sich selbst anregenden Mechanismus im Labor direkt nachzuweisen. „Durch die Kombination moderner analytischer Verfahren erhalten wir immer mehr Einblicke in die molekularen Details des faszinierenden Reaktionsgeschehens“, sagt Eisenreich. Die zentrale Rolle kommt hierbei dem aus Verbindungen der Übergangsmetalle Nickel- Cobalt- oder Eisen bestehenden Katalysator zu. Er sorgt nicht nur dafür, dass die ersten Biomoleküle überhaupt entstehen können, sondern bildet zudem den Ursprung der Kettenreaktion. Der Grund: Die aus den vulkanischen Gasen gerade erst neu entstandenen Biomoleküle greifen am Zentrum des Übergangsmetall-Katalysators an und ermöglichen so weitere chemische Reaktionen, in denen ganz neue Biomoleküle geschaffen werden. „Diese Kopplung zwischen Katalysator und organischem Reaktionsprodukt ist der erste Schritt“, erklärt Wächtershäuser. „Leben entsteht, wenn es im Folgenden zu einer ganzen Kaskade weiterer Kopplungen kommt, die schließlich auch zur Bildung einer Erbsubstanz und erster Zellen führt“.

In ihren Versuchen ahmten die Forscher die Bedingungen hydrothermaler Strömungskanäle nach und etablierten ein wässrig-metallorganisches System, das eine ganze Reihe verschiedener Biomoleküle produziert, darunter auch die Aminosäuren Glycin und Alanin. Hierbei diente eine Cyano-Verbindung als Kohlenstoffquelle und Kohlenmonoxid als Reduktionsmittel. Nickelverbindungen erwiesen sich in den Versuchen als der effektivste Katalysator. Das entstandene Glycin und Alanin führten die Wissenschaftler dann einem weiteren System zu, das wiederum zwei neue Biomoleküle herstellte. Das Ergebnis: Die beiden Aminosäuren erhöhten die Produktivität des zweiten Systems um das Fünffache.

In folgenden Arbeiten möchten die Forscher die Bedingungen der vulkanisch-hydrothermalen Systeme, in denen das Leben vor Jahrmilliarden entstanden sein könnte noch genauer nachstellen. „Wir simulieren hierzu zunächst bestimmte Stadien in der Entwicklung eines vulkanisch-hydrothermalen Strömungssystems, um die wichtigen Parameter heraus zu finden“, erklärt Wächtershäuser. „Erst danach können wir uns mit der rationalen Konstruktion eines Strömungsreaktors befassen“.

Die Ergebnisse der Wissenschaftler um Wächtershäuser und Eisenreich zeigen, dass die Entstehung und Evolution von Leben im heißen Wasser vulkanischer Schlote praktisch möglich ist. Die Ergebnisse offenbaren Vorteile dieser Theorie im Vergleich zu anderen Ansätzen. In den vulkanischen Schloten ändern sich Temperatur, Druck und pH-Wert entlang des Strömungswegs und bieten so ein graduelles Spektrum von Bedingungen, das allen Stadien der frühen Evolution zuträglich ist, bis hin zur Entstehung der ersten Erbsubstanz (RNA/DNA).

Die wichtigste Eigenschaft des Systems jedoch ist seine Autonomie: Der erste Stoffwechsel wäre hier anders als beispielsweise beim Konzept einer „kühlen Ursuppe“ nicht auf Zufallsereignisse oder eine Jahrtausende andauernde Ansammlung wesentlicher Komponenten angewiesen. Ist der erste Dominostein erst einmal umgeworfen, fallen die anderen von selbst. Die Entstehung des Lebens bewegt sich in festen Bahnen, vorgegeben durch die Regeln der Chemie – ein chemisch determinierter Prozess an dessen Ende der Stammbaum aller Lebewesen steht.

Originalpublikation:

Elements of metabolic evolution 
C. Huber, F. Kraus, M. Hanzlik, W. Eisenreich, G. Wächtershäuser, Chemistry – A European Journal, advanced online publication: 13 Jan 2012 – DOI: 10.1002/chem.201102914

Link: http://onlinelibrary.wiley.com/doi/10.1002/chem.201102914/abstract

Frühere Publikation:

http://portal.mytum.de/pressestelle/pressemitteilungen/news_article.2008-05-19.2296948206

Kontakt:

Dr. Claudia Huber
Technische Universität München
Department Chemie
Lichtenbergstraße 4
85748 Garching, Germany
Tel: 089 289 13044 – Fax: 089 289 13363
E-Mail: claudia.huber@mytum.de
Internet: http://www.biochemie.ch.tum.de/index.php?id=993
Die Technische Universität München (TUM) ist mit rund 460 Professorinnen und Professoren, 9.000 Mitarbeiterinnen und Mitarbeitern und 31.000 Studierenden eine der führenden technischen Universitäten Europas. Ihre Schwerpunktfelder sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften, Medizin und Wirtschaftswissenschaften. Nach zahlreichen Auszeichnungen wurde sie 2006 vom Wissenschaftsrat und der Deutschen Forschungsgemeinschaft zur Exzellenzuniversität gewählt. Das weltweite Netzwerk der TUM umfasst auch eine Dependance mit einem Forschungscampus in Singapur. Die TUM ist dem Leitbild einer unternehmerischen Universität verpflichtet.

Media Contact

Dr. Andreas Battenberg Technische Universität München

Weitere Informationen:

http://www.forschung-garching.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neues topologisches Metamaterial

… verstärkt Schallwellen exponentiell. Wissenschaftlerinnen und Wissenschaftler am niederländischen Forschungsinstitut AMOLF haben in einer internationalen Kollaboration ein neuartiges Metamaterial entwickelt, durch das sich Schallwellen auf völlig neue Art und Weise…

Astronomen entdecken starke Magnetfelder

… am Rand des zentralen schwarzen Lochs der Milchstraße. Ein neues Bild des Event Horizon Telescope (EHT) hat starke und geordnete Magnetfelder aufgespürt, die vom Rand des supermassereichen schwarzen Lochs…

Faktor für die Gehirnexpansion beim Menschen

Was unterscheidet uns Menschen von anderen Lebewesen? Der Schlüssel liegt im Neokortex, der äußeren Schicht des Gehirns. Diese Gehirnregion ermöglicht uns abstraktes Denken, Kunst und komplexe Sprache. Ein internationales Forschungsteam…

Partner & Förderer