Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus des bakteriellen Geruchssinns entdeckt

19.05.2017

Wissenschaftler des Moskauer Instituts für Physik und Technologie (MIPT) haben in Zusammenarbeit mit Kollegen vom Forschungszentrum Jülich, dem Institut de Biologie Structurale (IBS) und der European Synchrotron Radiation Facility (ESRF) in Grenoble eine Erklärung für einen universellen Mechanismus entwickelt, der Bakterien einen „Geruchssinn“ verleiht. Dazu wurde die Struktur des NarQ-Proteins aus dem Bakterium Escherichia coli (E. coli) entschlüsselt. Es zählt zu einer universellen Klasse sensorischer Histidinkinasen, die in Bakterien für die Übertragung von Signalen über ihre Umgebung verantwortlich sind. Der in der Fachzeitschrift Science veröffentlichte Artikel trägt zum Verständnis der Kommunikation von Bakterien untereinander bei und zeigt, wie sie Biofilme auf sterilen Oberflächen oder im menschlichen Körper bilden.

Wirkstoffe, die diesen bakteriellen „Geruchssinn“ beeinflussen, könnten in Zukunft als Ersatz für konventionelle Antibiotika Verwendung finden. Diese Wirkstoffe würden die Bakterien nicht abtöten, sondern ihnen lediglich Signale zuführen, die sie für den menschlichen Körper harmlos machen würden. Theoretisch wäre in diesem Fall auch die Entwicklung von Resistenzen nicht möglich.


Mechanismus der Signalübertragung durch das NarQ-Protein

Copyright: Ivan Gushchin, Moscow Institute of Physics and Technology

Alle Zellen sind von ihrer Umgebung durch eine dichte Membran isoliert, die kaum eine chemische Substanz durchdringen kann. Das ermöglicht es der Zelle, ihren inneren chemischen Zustand konstant und funktionsfähig zu halten. Jedoch schränkt die Membran auch den Informationsaustausch mit der Umgebung erheblich ein.

Um herauszufinden, was außerhalb passiert, verwenden Zellen spezielle molekulare Maschinen – Proteine. Die Proteine, die zur Kommunikation mit der Umgebung dienen, „leben“ oft in der Membran selbst oder in ihrer Nähe und sind verantwortlich für die Übertragung von Signalen oder chemischen Substanzen in die Zelle oder aus ihr heraus.

Der häufigste Mechanismus, über den Bakterien ihre Umgebung sensorisch erfassen können, sind sogenannte Zweikomponentensysteme. Solche Systeme bestehen aus zwei Proteinen: einer Kinase, die das Signal von Außen aufnimmt und es in die Zelle weiterleitet, und einem Antwortregulator, der das Signal in der Zelle empfängt und Folgereaktionen auslöst.

Ein nützliches Verfahren zum Verständnis der Funktionsweise von Proteinen ist die Untersuchung ihrer Struktur mit atomischer Genauigkeit. Bislang wurden die meisten Proteinstrukturen (mehr als 100.000) mithilfe von Röntgenkristallografie erzielt. Dieses Verfahren erfordert die Aufzeichnung des Beugungsmusters von im Gitter angeordneten Proteinmolekülen. Jedoch offenbart dies nur die Struktur eines einzelnen Zustandes des Proteins, wie bei einem Foto. Durch Fotografieren des Anfangs- und Endzustandes eines Prozesses kann abgeleitet werden, wie genau das Protein funktioniert, wenn es zwischen diesen Zuständen umschaltet.

Membran-„Kolben“ treiben Zell-Geruchssinnn

Die Autoren der Studie konnten die Struktur zweier Zustände der NarQ-Kinase aus E. coli bestimmen. Diese Kinase „fühlt“ die Anwesenheit von Nitraten in der Umgebung und sendet ein entsprechendes Signal durch die Zellmembran. Wie sich herausstellte, ist der Sensor in beiden Zuständen ein Dimer, d. h. zwei Proteinmoleküle fangen gemeinsam das Nitrat ein. Der erste Zustand ist inaktiv – das Protein ist nicht an das Nitrat-Ion gebunden und überträgt kein Signal. Im Gegensatz dazu ist der zweite Zustand aktiv: In diesem Zustand überträgt die Kinase ein Signal in die Zelle hinein, um sie zu informieren, dass in der Umgebung Nitrate vorhanden sind.

Die Proteinstruktur im aktiven Zustand wurde beim verlässlichsten „Wildtyp“-Protein entschlüsselt, einem Protein ohne die künstlichen Mutationen, die von Wissenschaftlern oft genutzt werden, um die Stabilität von Proteinen zu erhöhen. Um die Struktur im inaktiven Zustand aufzuzeichnen, mutierten die Autoren den Abschnitt, an den das Nitrat andockt. Die Stabilität des Proteins wurde dadurch nicht beeinflusst; jedoch dockte das Nitrat nicht mehr daran an, sodass die Autoren die Möglichkeit hatten, eine Kinase im inaktiven Zustand zu beobachten.

Es stellte sich heraus, dass der Signal-Zustand sich nur äußerst geringfügig vom inaktiven Zustand unterscheidet: um 0,5–1 Ångström, was etwa einem Fünftel der Größe des gesamten Ions entspricht (1 Ångström entspricht 10-10 m). Jedoch bringt das Andocken dieses Ions an den Sensor starke Veränderungen im Protein mit sich. Die Helices verschiedener Monomere beginnen, sich wie Kolben in entgegengesetzten Richtungen zu bewegen.

Diese „Kolben“ übertragen die kleine Veränderung um 0,5 bis 1 Ångström durch die Membran und ihre äußeren Enden verschieben sich um etwa 2,5 Ångström in entgegengesetzte Richtungen. In der Zelle, in der HAMP-Domäne, werden diese Verschiebungen in die entgegengesetzte Drehung der zwei Teile von NarQ übersetzt. Schließlich verändern sich die Positionen der Output-Helices um ganze 7 Ångström, womit die Signalübertragung abgeschlossen ist.

Neben den Strukturen, in denen die beiden Proteine ein symmetrisches Paar bilden, konnten die Wissenschaftler eine Struktur mit asymmetrischer Position der beiden Proteine produzieren. In diesem Zustand wird das Protein im Kristall anders angeordnet und ist stark gebogen. Jedoch bleibt der Effekt auf den den Antwortregulator beinahe unverändert. Die Vielseitigkeit der beobachteten Bewegung ermöglicht die Aussage, dass das Signalübertragungssystsem universell ist und dass die Sensoren anderer chemischer Verbindungen über den gleichen „Kolben-Verschiebe“-Mechanismus wirken könnten.

„Wie Signale durch die Zellmembran übertragen werden ist eine der wichtigsten Grundsatzfragen der modernen Biologie. In dieser Studie haben wir genau gezeigt, wie ein Signal (in diesem Fall das Anbinden des Nitrats) über hunderte von Ångström in die Zellen von Bakterien und Archaeen sowie von Pilzen und Pflanzen transportiert wird.

Wir erwarten vom besseren Verständnis dieses Signalübertragungsmechanismus, dass wir herausfinden können, wie solche Zellen manipuliert werden können – vor allem, um die schädlichen Effekte pathogener Mikroorganismen abzuschwächen oder zu neutralisieren“ meint Ivan Gushchin, Leiter des Laboratory of Structural Analysis and Engineering of Membrane Systems am MIPT und zur Zeit der Studie ebenfalls Mitarbeiter des Institute of Complex Systems: Strukturbiochemie (ICS-6) am Forschungszentrum Jülich.

„Das Aufklären der strukturellen Grundlagen von Informationsverarbeitung in biologischen Systemen mit atomarer Genauigkeit ist ein faszinierendes Forschungsfeld“ sagt Dieter Willbold, Direktor des ICS-6. „Informationsgewinnung und -integration sowie anschließende Entscheidungsfindung sind absolut zentrale Prozesse für das Phänomen, das wir als Leben bezeichnen.“


Originalpublikation: Ivan Gushchin, Igor Melnikov, Vitaly Polovinkin, Andrii Ishchenko, Anastasia Yuzhakova, Pavel Buslaev, Gleb Bourenkov, Sergei Grudinin, Ekaterina Round, Taras Balandin, Valentin Borshchevskiy, Dieter Willbold, Gordon Leonard, Georg Büldt, Alexander Popov, Valentin Gordeliy
"Mechanism of transmembrane signaling by sensor histidine kinases", Science published online May 18, 2017, DOI: 10.1126/science.aah6345

Weitere Informationen:

Institute of Complex Systems, Strukturelle Biochemie (ICS-6)

Ansprechpartner:

Dr. Ivan Gushchin
Moscow Institute of Physics and Technology
141700 Institutsky per. 9, Dolgoprudny, Russia
Tel.: +7 965 428-22-24
E-Mail: ivan.gushchin@phystech.edu

Prof. Dr. Valentin Gordeliy
Institute of Complex Systems, Strukturbiochemie (ICS-6)
Forschungszentrum Jülich
Moscow Institute of Physics and Technology
Institute de Biologie Structurale (CEA-CNRS-UJF), Grenoble
Tel.: +49 2461 61-9509
E-Mail: g.valentin@fz-juelich.de

Prof. Dieter Willbold
Institute of Complex Systems, Strukturbiochemie (ICS-6), Forschungszentrum Jülich
Institut für Physikalische Biologie der Heinrich-Heine-Universität Düsseldorf
Tel. +49 2461 61-2100
E-Mail: d.willbold@fz-juelich.de

Pressekontakt:

Peter Zekert
Forschungszentrum Jülich
Tel.: +49 2461 61-6041 / +49 2461 61-9486
E-Mail: p.zekert@fz-juelich.de

Peter Zekert | Forschungszentrum Jülich GmbH
Weitere Informationen:
http://fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics