Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mechanismus aufgeklärt: Wie Enzyme Wasserstoff produzieren

20.07.2017

Den entscheidenden Katalyseschritt bei der Wasserstoffproduktion durch Enzyme haben Forscher der Ruhr-Universität Bochum und der Freien Universität Berlin aufgeklärt. Die Enzyme, sogenannte Hydrogenasen, setzen Elektronen und Protonen effizient zu Wasserstoff um. Sie sind daher ein Kandidat für die biotechnologische Herstellung des potenziellen Energieträgers. „Um Wasserstoff in industriellem Maßstab mithilfe von Enzymen zu erzeugen, müssen wir deren Funktionsweise genau verstehen“, sagt Prof. Dr. Thomas Happe, einer der Autoren der Studie.

Das Team um Happe und Dr. Martin Winkler von der Bochumer Arbeitsgruppe für Photobiotechnologie berichtet über die Ergebnisse mit Berliner Kollegen um Dr. Sven Stripp in der Zeitschrift Nature Communications.


Aufgeklärter Reaktionsmechanismus (siehe Haupttext für ausführliche Bildunterschrift)

© Martin Winkler


Martin Winkler (rechts) und Thomas Happe (links) haben einen flüchtigen Zwischenzustand eines Enzyms dingfest gemacht.

© RUB, Marquard

Enzym arbeitet in zwei Richtungen

Hydrogenasen können in zwei Richtungen arbeiten: Sie setzen Protonen und Elektronen zu Wasserstoff um oder spalten Wasserstoff in Protonen und Elektronen. Diese Reaktionen finden an dem aktiven Zentrum der Hydrogenase statt, das eine komplexe Struktur aus sechs Eisen- und sechs Schwefelatomen ist, genannt H-Cluster. Während des Katalyseprozesses durchläuft dieser Cluster mehrere Zwischenzustände.

Bei der Spaltung von molekularem Wasserstoff (H2) bindet das Wasserstoffmolekül zunächst an den H-Cluster. „Hydrogenase-Forscher waren von jeher davon überzeugt, dass im ersten Reaktionsschritt eine ungleichmäßige Spaltung von H2 erfolgen müsse“, erklärt Martin Winkler.

Die Idee: Es entsteht ein positiv geladenes Proton (H+) und ein negativ geladenes Hydrid-Ion (H-), die dann schnell zu zwei Protonen und zwei Elektronen weiterreagieren. „Der Hydrid-Zustand des aktiven Enzyms, in dem also das Hydrid-Ion an das aktive Zentrum gebunden ist, gilt als hochgradig instabil – nachweisen konnte ihn bislang niemand“, so Winkler. Genau das gelang den Forschern nun.

Trick macht instabilen Zustand sichtbar

Mit einem Trick reicherten sie den H-Cluster-Zustand mit dem Hydrid-Ion an, sodass er sich spektroskopisch nachweisen ließ. Während der Wasserstoffspaltung stellt sich ein chemisches Gleichgewicht zwischen den beteiligten Reaktionspartnern – Protonen, Hydrid-Ionen und Wasserstoffmoleküle – ein.

Im Gleichgewicht liegen stabile Konzentrationen der drei Wasserstoffzustände vor. Indem die Forscher von außen große Mengen an Protonen und Wasserstoff zu dem Gemisch hinzugaben, verschoben sie das Gleichgewicht – zugunsten der Hydrid-Produktion. Das aktive Zentrum mit dem negativ geladenen Hydrid-Ion reicherte sich nun in größerer Menge an; genug, um messbar zu sein.

Den Hydrid-Zwischenzustand, der auch bei der Wasserstoffproduktion entsteht, wies das Team auch noch in weiteren Versuchen mit gezielt veränderten Hydrogenasen nach.

„So konnten wir das Katalyseprinzip dieser Hydrogenasen erstmals experimentell belegen“, resümiert Thomas Happe. „Das liefert eine entscheidende Grundlage, um den hochgradig effektiven Umsatzmechanismus des H-Clusters für die industrielle Erzeugung von Wasserstoff zu reproduzieren.“ Die Enzyme können bis zu 10.000 Wasserstoffmoleküle pro Sekunde umsetzen.

Förderung

Die Forscher erhielten finanzielle Unterstützung von der Volkswagen-Stiftung (LigH2t) und von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Resolv (EXC1069).

Originalveröffentlichung

Martin Winkler, Moritz Senger, Jifu Duan, Julian Esselborn, Florian Wittkamp, Eckhard Hofmann, Ulf-Peter Apfel, Sven Timo Stripp, Thomas Happe: Accumulating the hydride state in the catalytic cycle of [FeFe]-Hydrogenases, Nature Communications, 2017, DOI: 10.1038/NCOMMS16115

Pressekontakt

Prof. Dr. Thomas Happe
Arbeitsgruppe Photobiotechnologie
Lehrstuhl Biochemie der Pflanzen
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 27026
E-Mail: thomas.happe@rub.de


Erklärung zu der beigefügten Grafik des Reaktionsmechanismus:

A: Am H-Cluster können Elektronen (e-) und Protonen (H+) zu molekularem Wasserstoff (H2) umgesetzt werden oder Wasserstoff in Elektronen und Protonen gespalten werden. B: Forscher gehen davon aus, dass die Hydrogenase vier Zustände in einem Reaktionszyklus durchläuft (durch die Ziffern 1 bis 4 gekennzeichnet). Zustand 2 ist der wichtigste Zwischenzustand: Wasserstoff (H2) wird ungleichmäßig in H+ und H- gespalten. Das Hydrid-Ion (H-) ist an das Enzym gebunden. Da Zustand 2 sehr instabil ist, reagiert er umgehend weiter zu 3 und 4 und konnte im Gegensatz zu den Zuständen 1, 3 und 4 bisher noch nicht nachgewiesen werden. C: Um Zustand 2 nachzuweisen, wurde das chemische Gleichgewicht zugunsten dieses Zustands verschoben, indem die Konzentrationen des Wasserstoffs und der Protonen erhöht wurden (rote Pfeile).

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie tickt die rote Königin?
22.01.2019 | Christian-Albrechts-Universität zu Kiel

nachricht Zweigesichtige Stammzellen produzieren Holz und Bast
22.01.2019 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zweigesichtige Stammzellen produzieren Holz und Bast

Heidelberger Forscher untersuchen einen der wichtigsten Wachstumsprozesse auf der Erde

Für einen der wichtigsten Wachstumsprozesse auf der Erde – die Holzbildung – sind sogenannte zweigesichtige Stammzellen verantwortlich: Sie bilden nicht nur...

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Klassisches Doppelspalt-Experiment in neuem Licht

Internationale Forschergruppe entwickelt neue Röntgenspektroskopie-Methode basierend auf dem klassischen Doppelspalt-Experiment, um neue Erkenntnisse über die physikalischen Eigenschaften von Festkörpern zu gewinnen.

Einem internationalen Forscherteam unter Führung von Physikern des Sonderforschungsbereichs 1238 der Universität zu Köln ist es gelungen, eine neue Variante...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Führende Röntgen- und Nanoforscher treffen sich in Hamburg

22.01.2019 | Veranstaltungen

Smarte Sensorik für Mobilität und Produktion 4.0 am 07. Februar 2019 in Oldenburg

18.01.2019 | Veranstaltungen

16. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

17.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zweigesichtige Stammzellen produzieren Holz und Bast

22.01.2019 | Biowissenschaften Chemie

Wie tickt die rote Königin?

22.01.2019 | Biowissenschaften Chemie

Digitaler Denker: Argument-Suchmaschine hilft bei der Meinungsbildung

22.01.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics