Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maßgeschneiderter Diamant für die kontinuierliche Photokatalyse zur Umwandlung von CO₂

19.09.2016

Fraunhofer ICT-IMM koordiniert eine nationale Forschungskooperation zur Entwicklung eines Mikroreaktorsystems für die umweltfreundliche Nutzbarmachung von CO₂ mit Hilfe von Sonnenlicht.

Kohlendioxid (CO₂), Methan und Stickoxide – allesamt Treibhausgase, die im Verdacht stehen für die globale Erwärmung mitverantwortlich zu sein. Mit fast Dreivierteln davon stellt Kohlendioxid den maßgeblichen Anteil an den Emissionen.


Obwohl der Kohlenstoffkreislauf bei der Verwendung von Biomasse zur Energieerzeugung weitgehend geschlossen ist, ist die Nutzbarmachung des entstehenden CO₂ eine hochaktuelle gesellschaftspolitische Fragestellung. Gelingt diese, insbesondere unter Verwendung alternativer Energieformen wie z. B. Windenergie, Wasserkraft oder Sonnenenergie, verbessert das die Ökobilanz nachhaltig.

Die Natur als Vorbild

Im Rahmen des Projektes CarbonCat sollen wichtige Erkenntnisse zur Beantwortung dieser Fragestellung gewonnen werden. Zum Einsatz kommen dabei Hochleistungs-LEDs in Kombination mit der gezielten Umsetzung von CO₂ auf Basis eines neuartigen, überwiegend Kohlenstoff-basierenden Photokatalysatorsystems, das in einem mikrostrukturierten Reaktorsystem zum Einsatz kommen soll.

Auf lange Sicht will das Konsortium aus dem Fraunhofer ICT-IMM, der Julius-Maximilians-Universität Würzburg und dem Unternehmen Sahlmann Photochemical Solutions dem Beispiel der natürlichen Photosynthese durch ausschließliche Nutzung von Sonnenlicht technologisch möglichst nahe kommen.

“Wir haben in diesem richtungsweisenden Projekt die Möglichkeit, die natürliche Photosynthese in einem technischen System nachzuempfinden. Anstelle von Pflanzenzellen mit ihren photosynthetisch aktiven Chloroplasten, verwenden wir einen neu entwickelten Mikroreaktor, der den Diamant-Photokatalysator als photoaktives Zentrum enthält.

Der besondere Aufbau des Mikroreaktors ermöglicht eine kontinuierliche Durchmischung von CO₂ und Wasser bei Bestrahlung mit sichtbarem Licht”, erklärt Thomas Rehm, Senior Scientist am Fraunhofer ICT-IMM und Koordinator des Verbundprojektes.

Innovatives Katalysatorsystem ins richtige Licht setzen

Das Projekt CarbonCat soll beweisen, dass es möglich ist, unter naturnahen Bedingungen CO₂ in wertvolle chemische C1- Bausteine wie Methanol umzuwandeln.

Für Anke Krüger, Professorin für Organische Chemie an der Julius-Maximilians-Universität Würzburg, heißt dies “dass neben der technologischen Seite die chemische Optimierung von Diamant als Photokatalysator eine Schlüsselrolle einnimmt. Die gezielte Funktionalisierung von Diamantoberflächen mit komplexen organischen Bausteinen ist nicht trivial, vor allem hinsichtlich der Langzeitstabilität zur Nutzung in einem kontinuierlichen Prozess, wie wir es in dem Mikroreaktor beabsichtigen zu tun.”

Neben der Reaktortechnologie und den katalytisch aktiven Oberflächen sind sowohl die Auswahl und die Mischung der benötigten Wellenlängen als auch die Anordnung der LEDs von entscheidender Bedeutung. „Dem Zusammenspiel zwischen Lichtquelle und den anderen Komponenten des Systems gilt große Aufmerksamkeit. Dies ist für den photokatalytischen Prozess von ebenso großer Bedeutung wie für die Gesamteffizienz des Reaktors“, so Benjamin Sahlmann, der als freiberuflicher Chemiker unter der Bezeichnung Sahlmann Photochemical Solutions tätig ist.

„Mit den Erkenntnissen aus CarbonCat hoffen wir in Zukunft, einen Beitrag zur Verringerung der Umweltfolgen aus dem vorhandenen CO₂-Ausstoß leisten zu können“, resümiert Thomas Rehm.

Das nationale Verbundprojekt CarbonCat wird im Rahmen der Fördermaßnahme CO₂Plus des Bundesministeriums für Bildung und Forschung gefördert. Die Projektpartner erhalten für eine Projektdauer von 3 Jahren insgesamt eine Förderung von ca. 1,34 Millionen €.

Der Beitrag der Projektpartner

Das Fraunhofer ICT-IMM wird basierend auf seiner Expertise in der Entwicklung und Erprobung von mikrostrukturierten Reaktoren eine kontinuierlich betriebene Reaktoranlage verwirklichen, deren Kern der neuartige Diamant-Photokatalysator sein wird. Die physikalische Adaption des im Mikroreaktor eingesetzten Diamantmaterials sowie die eingehende Untersuchung des photokatalytischen Prozesses im kontinuierlichen Betrieb sind ebenfalls Aufgaben des ICT-IMM.

Die Arbeitsgruppe von Prof. Krüger an der Julius-Maximilians-Universität Würzburg beschäftigt sich seit mehr als 10 Jahren mit der Herstellung, Charakterisierung und Anwendung nanoskaliger Kohlenstoffmaterialien, insbesondere Diamant. Die von der Arbeitsgruppe entwickelten Methoden zur besonders stabilen Anknüpfung von Funktionsmolekülen an Diamantüberflächen werden in CarbonCat eingesetzt, um das Diamantmaterial für seinen Einsatz als Photokatalysator im Mikroreaktor zu optimieren.

Sahlmann Photochemical Solutions wird im Rahmen von CarbonCat die Lichtquellen für die Photokatalyse in den Reaktionssystemen entwickeln. Eine maßgeschneiderte Herstellung der benötigten Lichtquellen und deren spektrale Vermessung ist ebenso Aufgabe wie die Bewertung der Lichtquellen hinsichtlich der Gewährleistung der Arbeitssicherheit.

Dr. rer. nat. Thomas Rehm | Fraunhofer ICT-IMM
Weitere Informationen:
http://www.imm.fraunhofer.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics