Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Maßgeschneiderte Bausteine des Lebens

05.10.2016

Einbau neuer Atome in das Erbgut hilft in der Krebsforschung

Nukleobasen bilden die Grundbausteine des Erbguts. Wenn man deren Sauerstoffatome durch Schwefel ersetzt und anschließend mit UV-Licht bestrahlt, wirken diese Nukleobasen als  Photochemotherapeutikum. Durch die Kombination von experimentellen und theoretischen Untersuchungen ist es den ChemikerInnen um Leticia González von der Universität Wien gelungen, den molekularen Prozess hinter diesem Vorgang zu verstehen.


Thiocytosin kann die Energie von UV-Licht speichern und diese für chemische Reaktionen einsetzen.

Copyright: Sebastian Mai


Die Strukturen von Cytosin und Thiocytosin.

Copyright: Sebastian Mai

Die neu gewonnenen Erkenntnisse können dazu beitragen, neue, noch effizientere Arzneistoffe zu entwickeln. Die Studie erscheint in der aktuellen Ausgabe von "Nature Communications".

Nukleobasen stellen das ABC des Lebens dar, indem sie durch die Abfolge der Bausteine Adenin, Guanin, Cytosin bzw. Thymin den Bauplan für die Proteine und andere Moleküle eines Lebewesens beinhalten. Seit kurzem sind ForscherInnen an chemisch modifizierten Nukleobasen interessiert, da diese bisher unbekannte biologische Funktionen haben können.

So haben modifizierte Nukleobasen, bei denen Sauerstoffatome durch Schwefel ersetzt werden (sogenannte Thiobasen), im Vergleich zu den natürlich vorkommenden Nukleobasen völlig unterschiedliche Eigenschaften bezüglich der Empfindlichkeit gegenüber UV-Licht.

Adenin, Guanin, Cytosin und Thymin haben aufgrund ihrer chemischen Struktur einen internen Schutzmechanismus gegenüber UV-Strahlen. Sie wandeln UV-Licht in einem ultraschnellen Prozess in Wärmeenergie um. Thiobasen jedoch "speichern" die Energie des eintreffenden UV-Lichts und können dadurch chemische Reaktionen mit ihrer Umgebung eingehen. So finden sich beispielsweise ausgewählte Thiobasen in Immunsuppressiva, welche PatientInnen nach einer Organtransplantation zur Unterdrückung der Immunabstoßung verabreicht bekommen. Betroffene haben aufgrund der größeren Reaktionsfreudigkeit der modifizierten Thiobasen ein deutlich höheres Hautkrebsrisiko.

Die internationale Arbeitsgruppe um die theoretische Chemikerin Leticia González arbeitet schon seit mehreren Jahren an der Aufklärung der Photochemie von Nukleobasen. In ihrer aktuellen Studie haben die ForscherInnen nun erstmals den Mechanismus der Lichtanregung von Thiocytosin im Detail analysiert.

"Wir haben in Echtzeit untersucht, wie sich ein Thiocytosin-Molekül während und nach der Anregung durch UV-Licht verhält. Dank ultrakurzer Laserimpulse konnten wir bereits Aussagen über die Zeitskalen, auf denen diese Reaktionen ablaufen, machen", so González. Um ein detailliertes Bild über die vom Molekül gespeicherte Lichtenergie sowie die Bewegungen des Moleküls zu bekommen, haben die WissenschafterInnen auf theoretische Simulationen zurückgegriffen.

"Unsere Berechnungen, die unter anderem am Vienna Scientific Cluster durchgeführt wurden, zeigen, dass Thiocytosin nach der Anregung durch UV-Licht extrem schnell in einen sogenannten Triplett-Zustand übergeht", berichtet González. Dabei treten nicht alle Elektronen des Moleküls paarweise auf, wie es normalerweise der Fall ist, sondern zwei Elektronen bewegen sich ungepaart unabhängig voneinander im Molekül. Die durch das UV-Licht gespeicherte Energie überdauert einen so langen Zeitraum, dass das Molekül dabei weitere chemische Reaktionen eingehen kann. "Die bei dieser Untersuchung gewonnenen Erkenntnisse können dazu beitragen, neue Tumortherapeutika zu entwickeln und damit einen wesentlichen Beitrag in der Krebstherapie zu leisten", erklärt die Chemikerin abschließend.

Publikation in "Nature Communications"
The Origin of Efficient Triplet State Population in Sulfur-Substituted Nucleobases
Sebastian Mai, Marvin Pollum, Lara Martínez-Fernández, Nicholas Dunn, Philipp
Marquetand, Inés Corral, Carlos E. Crespo-Hernández, and Leticia González
Nature Communications
DOI: 10.1038/ncomms13077

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Leticia González
Institut für Theoretische Chemie
Universität Wien
1090 Wien, Währinger Straße 17
T +43-1-4277-527 50
M +43-664-602 77-527 50
leticia.gonzalez@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 15 Fakultäten und vier Zentren arbeiten rund 9.700 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit auch die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 92.000 nationale und internationale Studierende inskribiert. Mit über 180 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. 1365 gegründet, feierte die Alma Mater Rudolphina Vindobonensis im Jahr 2015 ihr 650-jähriges Gründungsjubiläum. http://www.univie.ac.at

Stephan Brodicky | Universität Wien

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biomarker besser nachweisen: Bremer Forscher entwickeln neue Methode mit Mikrokapseln
14.08.2018 | Jacobs University Bremen gGmbH

nachricht Grönland: Tiefe des Schmelzwassereintrags beeinflusst Planktonblüte
14.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics