Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Malaria-Wirkstoff: Wenn die "Kopie" besser als das Original ist

29.05.2018

ChemikerInnen der Universität Wien synthetisieren Chinin und Chinin-Derivate, die wirksamer sind als der Naturstoff

Die Synthese von Naturstoffen ist eines der Forschungsgebiete von Nuno Maulide und seiner Arbeitsgruppe an der Fakultät für Chemie der Universität Wien. Dazu gehört auch die Herstellung von strukturell verwandten Verbindungen, welche die Natur nicht erzeugen kann.


Der Naturstoff Chinin (Bildmitte) und ein neues Arylanalogon (rechts) mit verbesserter Aktivität gegen Malaria-Erreger.

Copyright: Maulide Group

Den ForscherInnen gelang nun die Herstellung zweier neuartiger Analoga des Naturstoffes Chinin, einem Wirkstoff gegen Malaria. Diese haben eine höhere Aktivität gegenüber Malaria-Erregern als bisher eingesetzte Medikamente. Die Ergebnisse erscheinen aktuell in der renommierten Fachzeitschrift "Angewandte Chemie".

Die Natur bietet eine enorme Vielfalt an komplexen Molekülen, welche oft als Leitsubstanzen in der Entwicklung von Medikamenten eine tragende Rolle spielen. Das Nachbauen solcher Moleküle im Labor, die sogenannte Totalsynthese, bietet über molekulare Modifikationen – neben der Herstellung dieser Substanzen selbst – auch die Möglichkeit zur Herstellung von strukturellen Verwandten dieser Moleküle, sogenannten Analoga. Solche Modifikationen können sowohl zum Verlust als auch zur deutlichen Verbesserung der biologischen Aktivität einer Substanz führen.

Die Arbeitsgruppe um Nuno Maulide, Professor für Organische Synthese an der Universität Wien, beschäftigt sich neben der Entwicklung neuartiger chemischer Reaktionen auch mit der Anwendung solcher in der Naturstoffsynthese. Vor kurzem gelang es der Gruppe eine neue Synthese von Chinin, ein aus der Chinarinde gewonnenes Alkaloid, zu entwickeln.

"Chinin, das im allseits bekannten Tonic Water enthalten ist, wird seit dem 17. Jahrhundert zur Behandlung von Malaria eingesetzt", erklärt der aus Portugal stammende Wissenschafter und ERC-Preisträger, der erst kürzlich zum korrespondierenden Mitglied der Österreichischen Akademie der Wissenschaften gewählt wurde. Mit der Synthese dieses Moleküls ist Robert B. Woodward vor über 70 Jahren ein Meilenstein in der organischen Chemie gelungen. Seither wird immer wieder daran gearbeitet, mit moderneren Methoden immer effizientere Synthesewege zu dem Molekül zu finden.

Neue Analoga mit verbesserter Aktivität

"Durch katalytische C−H-Aktivierung – das sind Reaktionen, die Kohlenstoff-Wasserstoff-Bindungen spalten – ist es uns gelungen, eine kurze Route zum Naturstoff selbst zu entwickeln. Und wir haben auch einen Weg gefunden, bisher unbekannte Analoga des Wirkstoffes herzustellen", erklärt Martin Berger, einer der Erstautoren der Studie.

Um die Anti-Malaria-Aktivität dieser hergestellten Analoga zu bestimmen, wandten sich die ForscherInnen an das Swiss Tropical and Public Health Institute der Universität Basel. Dort zeigte Kooperationspartner Marcel Kaiser, dass die Analoga eine höhere Aktivität gegen Plasmodium berghei, einem der Haupterreger der Krankheit, aufweisen als der Naturstoff selbst.

"Die Entwicklung neuer Substanzen zur Bekämpfung von Krankheiten ist deshalb so wichtig, da manche Erreger – wie auch jene der Malaria – Resistenzen gegen vorhandene Medikamente ausbilden können", erläutert Christian Knittl-Frank, Co-Autor der Studie.

"Die Tatsache, dass lebende Organismen ganz bestimmte Moleküle herstellen können, ist faszinierend, aber zugleich auch limitierend, da es eben nur ganz bestimmte Sets an Molekülen sind. Es braucht ChemikerInnen, um naturstoff-ähnliche Verbindungen zu erzeugen und somit potentere Wirkstoffe im Kampf gegen Krankheiten zu finden", so Maulide abschließend.

Publikation in "Angewandte Chemie"
"C−H Activation Enables a Concise Total Synthesis of Quinine and Analogues with Enhanced Antimalarial Activity": Daniel H. O’ Donovan, Paul Aillard, Martin Berger, Aurélien de la Torre, Desislava Petkova, Christian Knittl-Frank, Danny Geerdink, Marcel Kaiser and Nuno Maulide
in: Angewandte Chemie International Edition, 2018.
DOI: 10.1002/anie.201804551

Wissenschaftlicher Kontakt
Univ.-Prof. Dr. Nuno Maulide
Institut für Organische Chemie
Universität Wien
1090 Wien, Währinger Straße 38
T +43-1-4277-521 55
M +43-664-602 77-521 55
nuno.maulide@univie.ac.at

Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 33
alexandra.frey@univie.ac.at

Offen für Neues. Seit 1365.
Die Universität Wien ist eine der ältesten und größten Universitäten Europas: An 19 Fakultäten und Zentren arbeiten rund 9.600 MitarbeiterInnen, davon 6.800 WissenschafterInnen. Die Universität Wien ist damit die größte Forschungsinstitution Österreichs sowie die größte Bildungsstätte: An der Universität Wien sind derzeit rund 94.000 nationale und internationale Studierende inskribiert. Mit über 175 Studien verfügt sie über das vielfältigste Studienangebot des Landes. Die Universität Wien ist auch eine bedeutende Einrichtung für Weiterbildung in Österreich. http://www.univie.ac.at

Weitere Informationen:

https://www.nature.com/articles/s41598-018-25601-7

Stephan Brodicky | Universität Wien

Weitere Berichte zu: Angewandte Chemie Chinin Malaria Moleküle Nuno Synthese

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erster Test für neues Roboter-Umweltmonitoring-System der TU Bergakademie Freiberg

10.07.2020 | Informationstechnologie

Binnenschifffahrt soll revolutioniert werden: Erst ferngesteuert, dann selbstfahrend

10.07.2020 | Verkehr Logistik

Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics