Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Malaria-Erreger gefilmt: Vom Ringelreigen zum Poledance

30.01.2017

Neue Erkenntnisse durch Filme im Mikrometer-Maßstab: Wissenschaftler des Universitätsklinikums Heidelberg entdeckten Schlüsselprotein für „Geburt“ der Erreger und Hinweis darauf, wofür Krümmung der Parasiten sinnvoll sein könnte.

Der Malaria-Erreger, der Parasit Plasmodium, stellt Wissenschaftler weltweit vor eine Vielzahl ungelöster Fragen. Bei deren Erforschung schlägt die Arbeitsgruppe um Prof. Dr. Friedrich Frischknecht vom Zentrum für Infektiologie am Universitätsklinikum Heidelberg innovative Wege ein:

Die Forscher haben die einzelligen, gekrümmten Parasiten bei ihrer „Geburt“ in der Mücke, bei der Umkreisung von Blutgefäßen sowie in einem künstlichen Stangenlabyrinth in Echtzeit gefilmt und dadurch neue Erkenntnisse gewonnen. Ihre Ergebnisse sind aktuell in den Fachzeitschriften „eLife“ und „Advanced Healthcare Materials“ erschienen.

Das Schlüpfen gelingt Plasmodien nur in einer gemeinsamen Anstrengung. Das entdeckte Dennis Klug, Doktorand in der Arbeitsgruppe von Professor Frischknecht, als er das bisher noch nicht beschriebene und in seiner Funktion unbekannte Parasiten-Protein Trp1 untersuchte. Er infizierte Moskitos mit veränderten Plasmodien, die Trp1 nicht bilden können.

Diese Parasiten schafften es nicht, sich aus den Zysten an der Magenwand der Mücken, in denen sie heranwachsen, zu befreien. Warum? Die Antwort brachte der Vergleich mit unveränderten Malaria-Erregern. Nächtelang beobachteten Klug und Frischknecht die Vorgänge in den Zysten und nahmen Filme des Schlüpfvorgangs auf. Ist die Entwicklung in den Zysten abgeschlossen, beginnen die Parasiten sich gleichförmig zu bewegen.

Der gemeinsame Tanz hunderter Einzeller scheint eine viel größere Kraft auf die Zystenwand auszuüben, als ein einzelner Parasit aufbringen könnte – sie reißt schließlich auf. Fehlt Trp1, kommen die Parasiten nicht in Tanzlaune. Das liegt aber nicht an einer Bewegungsstörung – der Zyste entnommen, bewegen sie sich normal.

„Trp1 könnte eine Art Sensor sein, über den die Parasiten das Startsignal für ihre gemeinsame Bewegung erhalten“, vermutet Klug. „Das müssen weitere Versuche klären. Über die Entwicklung der Parasiten in der Mücke gibt es bislang noch sehr wenige Forschungsarbeiten.“

Warum ist der Malaria-Parasit krumm?

Plasmodien gelangen durch einen Moskitostich vom Speichel der Mücke in den menschlichen Organismus. Ihr weiterer Weg führt sie von der Haut in die Blutbahn, von dort in Leberzellen und anschließend in rote Blutkörperchen. In der Haut bewegen sich die Parasiten sehr schnell und dringen in Blutgefäße ein. Wie sie dies in so kurzer Zeit bewerkstelligen, obwohl sie die Blutgefäße wahrscheinlich nicht gezielt ansteuern, sondern eher zufällig auf sie treffen, ist noch unklar.

Warum ist der Malaria-Parasit krumm? Die Heidelberger Wissenschaftler vermuten, dass dieses Rätsel eng mit der Frage verknüpft ist, wie die Parasiten in die Blutgefäße der Haut gelangen. Plasmodien haben die Form eines kleinen Halbmondes und bewegen sich daher auf einem festen Untergrund meistens im Kreis. „Der Durchmesser dieses Kreises entspricht dem der kleinsten Blutgefäße in der Haut“, sagt Frischknecht. „Wir sind überzeugt, dass das kein Zufall ist.“ Um diesen Verdacht zu prüfen, bastelte sein Team gemeinsam mit Wissenschaftlern um Prof. Dr. Joachim Spatz vom Physikalisch-Chemischen Institut der Universität Heidelberg und dem Max-Planck-Institut für medizinische Forschung ein mikroskopisch kleines „Stangen-Labyrinth“ für die Einzeller. Es besteht aus feinen Kunststoffsäulen, die Blutgefäße nachbilden sollen.

Das Ergebnis der Untersuchungen: Bei verschiedenen Durchmessern der Stangen ringelten sich die Parasiten bevorzugt um solche, die ihrer natürlichen Krümmung entsprachen. „Es scheint so, dass Plasmodien quasi dafür gebaut sind, die feinen Blutgefäße der Haut zu umkreisen. Dieses Verhalten konnten wir bereits filmen“, so der Parasitologe. „Das würde erklären, wie sie geeignete Eintrittsstellen wie etwa Schwachstellen in der Gefäßwand finden, durch die sie in die Blutgefäße eindringen können. Das wollen wir im Rahmen des Sonderforschungsbereichs 1129 weiter untersuchen.“

Literatur mit Filmen:
• Klug and Frischknecht, Motility precedes egress of malaria parasites from oocysts, eLife, 2017.
http://dx.doi.org/10.7554/eLife.19157

• Muthinja, Ripp, Hellmann, Haraszti, Dahan, Lemgruber, Battista, Schütz, Fackler, Schwarz, Spatz and Frischknecht, Microstructured blood vessel surrogates reveal structural tropism of motile malaria parasites, Advanced Healthcare Materials, 2017.
http://dx.doi.org/10.1002/adhm.201601178

Weitere Informationen im Internet:
Parasitologie des Universitätsklinikums Heidelberg: https://www.klinikum.uni-heidelberg.de/About-us.6570.0.html
http://www.sfb1129.de/

Kontakt:
Prof. Dr. Friedrich Frischknecht
Abteilung Parasitologie
Zentrum für Infektiologie
Universitätsklinikum Heidelberg
Tel.: 06221 56-6537
E-Mail: freddy.frischknecht@med.uni-heidelberg.de

Julia Bird | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics