Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magische kolloidale Cluster

11.12.2018

Wissenschaftler der FAU erforschen das Entstehen komplexer Strukturen durch Selbstorganisation von Partikeln

Komplexität in der Natur – vom Chlorophyll bis hin zu Lebewesen – entsteht häufig durch Selbstorganisation und gilt als besonders robust. Von praktischer Bedeutung zeigen sich kompakte Ansammlungen elementarer Partikel, so genannte Cluster, die als Atomkerne, Nanoteilchen oder Viren vorkommen.


Die Mikroskopaufnahmen verschiedener Typen und Größen kolloidaler Cluster werden mit geometrischen Modellen verglichen. Die Zahlen geben den Typ und die Größe N an. (Maßstabsbalken: 1 Mikrometer)

Quelle: FAU/Junwei Wang


Elektronenmikroskopische Aufnahme von kolloidalen Clustern. Jeder Cluster besteht aus winzigen Polymerkugeln, die sich zu einem trocknenden Wassertropfen zusammenfügen. (Maßstabsbalken: 2 Mikrometer)

Quelle: FAU/Junwei Wang

Nun entschlüsselte ein interdisziplinäres Forscherteam um die Professoren Nicolas Vogel und Michael Engel von der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) die Struktur und den Bildungsprozess einer Klasse dieser hochgeordneten Cluster.

Ihre neuen Erkenntnisse zum Verständnis der Strukturbildung in Clustern veröffentlichten sie in der aktuellen Ausgabe der Fachzeitschrift „Nature Communications“.*

Als Cluster bezeichnen Physiker eine eigene Materieform, die im Übergangsbereich zwischen isolierten Atomen und ausgedehnten Festkörpern oder Flüssigkeiten angesiedelt ist. Die so genannten „magischen Cluster“ gehen ursprünglich auf Arbeiten von Eugene Wigner, Maria Göppert-Mayer und Hans Jensen zurück, die mit dieser Theorie die Stabilität von Atomkernen erklären konnten und dafür im Jahr 1963 mit dem Physik-Nobelpreis ausgezeichnet wurden.

„Bisher ging man in der Wissenschaft davon aus, dass der Effekt ausschließlich durch die Anziehung von Atomen zustande kommt“, sagt Prof. Dr. Nicolas Vogel, Professur für Partikelsynthese. „Unsere Forschungen belegen nun, wie auch Partikel, die sich nicht anziehen, solche Strukturen bilden. Damit trägt die Publikation zum Verständnis von Strukturbildungen von Clustern ganz generell bei.“

Die Arbeiten basieren auf einer interdisziplinären Kooperation: Prof. Dr. Nicolas Vogel, Forscher am Lehrstuhl für Feststoff- und Grenzflächenverfahrenstechnik, und Prof. Dr. Michael Engel, Wissenschaftler am Lehrstuhl für Multiskalensimulation – beide aus dem Department für Chemie und Bioingenieurwesen – sowie der Materialwissenschaftler Prof. Dr. Erdmann Spiecker, Inhaber des Lehrstuhls für Werkstoffwissenschaften (Mikro- und Nanostrukturforschung), arbeiteten dabei eng zusammen und ergänzten ihre Expertisen.

Vogel kümmerte sich um die Synthese, Spiecker um die Strukturanalyse und Engel um die Modellierung von Clustern aus kolloidalen Polymerkugeln. Der Begriff kolloidal leitet sich vom altgriechischen Wort für Leim ab und bezeichnet Teilchen oder Tröpfchen, die in einem Dispersionsmedium – einem Feststoff, Gas oder Flüssigkeit – fein verteilt sind.

„Unsere drei Forschungsansätze sind in diesem Projekt besonders eng miteinander verknüpft“, betont Prof. Engel, „sie ergänzen sich gegenseitig und ermöglichen erstmalig ein tiefes Verständnis des zugrundeliegenden Strukturbildungsprozesses.“

Strukturen organisieren sich selbst

Erster Schritt der Wissenschaftler war die Synthese der kolloidalen Cluster, die verschwindend klein sind – ihre Gesamtgröße beträgt gerade einmal ein Zehntel des Durchmessers eines Haares – und in einem mehrstufigen Prozess entstehen. „Zunächst verdampft Wasser aus einem Emulsionstropfen und die Polymerkugeln werden zusammengeschoben. Danach bilden sie im Laufe der Zeit immer gleichmäßigere kugelförmige Cluster und beginnen zu kristallisieren. Mehrere tausend Einzelteilchen finden dabei – und das ist das Bemerkenswerte – von selbst ihre ideale Position in einer präzisen hochsymmetrischen Struktur, bei der alle Partikel auf vorhersagbaren Plätzen sitzen“, erläutert Prof. Vogel.

Die Forscher fanden mehr als 25 verschiedene magische kolloidale Cluster in verschiedenen Typen und Größen und arbeiteten vier unterschiedliche Cluster-Morphologien heraus: Mit der schnellsten Verdampfung bilden sich verbeulte Cluster, da sich die Tröpfchengrenzfläche schneller bewegt als sich kolloidale Partikel verfestigen können.

Wenn die Verdampfungsrate gesenkt wird, dominieren kugelförmige Cluster. Sphärische Cluster weisen eine gleichmäßig gekrümmte Oberfläche mit nur schwacher Kristallordnung auf. Zudem bilden sich mit weiter abnehmender Verdampfungsrate Cluster mit ikosaedrischer Symmetrie heraus. Diese Cluster sind besonders hochsymmetrisch und weisen viele zwei-, drei- und fünffache Symmetrieachsen auf.

In einem weiteren Schritt führten die Forscher Simulationen und hochgenaue numerische Berechnungen durch. Die Analyse belegten, dass Cluster, deren Zahl der Bausteine identisch mit einer so genannten magischen Zahl ist, erhöhte Stabilität aufweisen – wie von der Theorie vorhergesagt.

Das Vorkommen der beobachteten ikosaedrischen Cluster ist wohlbekannt für Viren und ultrakleine Metallcluster, konnte aber bisher nicht direkt untersucht werden. Die aktuellen Ergebnisse liefern daher erstmalig ein detailliertes und systematisches Verständnis der Ausbildung solcher magischen Cluster im untersuchten Modellsystem und erlauben Rückschlüsse auf andere natürliche Systeme, die zur Clusterbildung neigen.

* https://doi.org/10.1038/s41467-018-07600-4

Ansprechpartner für Medien:
Prof. Dr. Nicolas Vogel
Tel.: 09131/85-20357
nicolas.vogel@fau.de

Prof. Dr. Michael Engel
Tel: 09131/85-20857
michael.engel@fau.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Nicolas Vogel
Tel.: 09131/85-20357
nicolas.vogel@fau.de

Prof. Dr. Michael Engel
Tel: 09131/85-20857
michael.engel@fau.de

Originalpublikation:

https://doi.org/10.1038/s41467-018-07600-4

Dr. Susanne Langer | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionenkanal mit Türsteher: Calcium-Ionen blockieren Kanalöffnung in Abhängigkeit vom pH-Wert
18.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Kältefalle für Zellen und Organismen - Forschung an verbessertem Mikroskopieverfahren
18.06.2019 | Technische Universität Darmstadt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Saubere Lunge dank Laserprozessabsaugung

18.06.2019 | Maschinenbau

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungsnachrichten

Ionenkanal mit Türsteher: Calcium-Ionen blockieren Kanalöffnung in Abhängigkeit vom pH-Wert

18.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics