Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Magenkrebs im Visier - Neuer Ansatz für eine selektive Chemotherapie

24.01.2020

Ein neuartiger Wirkstoff namens „FerriIridium“ soll gleichzeitig Therapie und Diagnostik von Magenkrebs möglich machen. Die zunächst wenig wirksame Vorstufe („Prodrug“) auf Basis einer iridiumhaltigen Verbindung wird erst innerhalb der Tumorzellen selektiv durch deren erhöhten Gehalt an Eisenionen aktiviert, wie Wissenschaftler in der Zeitschrift Angewandte Chemie erläutern. So werden unerwünschte Nebenwirkungen verringert.

Zellen transportieren Stoffe aus dem extrazellulären Raum in ihr Inneres, indem sie winzige Bereiche ihre Membran nach innen stülpen und abschnüren (Endocytose). Auf diese Weise gelangt auch FerriIridium ins Zellinnere.


Die Vorstufe des Wirkstoffs basiert auf einer iridiumhaltige Verbindung und ist wenig wirksam. Erst in der Tumorzelle, wo der Gehalt der Eisenionen erhöht ist, wird der Wirkstoff aktiviert.

(c) Wiley-VCH

Die entstehenden Vesikel verschmelzen dann mit sogenannten Lysosomen, Zellorganellen mit saurem Milieu, die dreiwertige Eisenionen Fe(III) und Enzyme enthalten, um Fremdstoffe und nicht mehr benötigte zelleigene Stoffe in ihre Bestandteile zu zerlegen. In Magenkrebszellen ist die Fe(III)-Konzentration der Lysosomen deutlich erhöht.

Das machen sich die Wissenschaftler um Yu Chen und Hui Chao von der Sun Yat-Sen University, Guangzhou, und der Hunan University of Science and Technology in Xiangtan (China) zunutze: Sie statteten FerriIridium mit einer speziellen funktionellen Gruppe (m-Iminocatechol-Gruppe) aus, die selektiv Fe(III) bindet und dabei oxidiert wird, während die Eisenionen zu Fe(II) reduziert werden. Unter den sauren Bedingungen der Lysosomen wird FerriIridium daraufhin in zwei Bestandteile gespalten: einen Iridium-Komplex und ein Benzochinon-Derivat.

Diese Reaktionsfolge hat einen dreifachen Effekt: Erstens können Fe(II)-Ionen eine Reaktion katalysieren, bei der hochreaktive Hydroxyl-Radikale entstehen. Zweitens wirken Benzochinone stark oxidierend.

Mit bestimmten zellulären Substanzen, wie etwa NADPH, entstehen Hydroxychinone, die mit Sauerstoff reagieren, wobei radikalische Sauerstoffspezies entstehen sowie Wasserstoffperoxid, das wiederum mit Fe(II) zu Hydroxyl-Radikalen reagieren kann.

Zudem können Benzochinon-Verbindungen die zelluläre Atmungskette stören. Die Lysosomen werden durch die Radikale zerstört und ihr Inhalt freigesetzt. Drittens erhöht die Spaltung sowohl die Phosphoreszenz als auch die Toxizität des Iridium-Komplexes drastisch.

Anhand der Phosphoreszenz lässt sich der Tumor diagnostizieren. Vor allem aber wird der toxische Iridium-Komplex von Mitochondrien aufgenommen, den zellulären „Kraftwerken“, die der Wirkstoff von innen heraus zerstört, indem er ihr Membranpotential kollabieren lässt. Gemeinsam führen diese Effekte letztlich zu einem Absterben der Magenkrebszellen und einem Schrumpfen der Tumore, wie Versuche an Zelllinien sowie Tumormäusen belegten.

Angewandte Chemie: Presseinfo 35/2019

Autor: Hui Chao, Sun Yat-Sen University (China)

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Originalpublikation:

https://doi.org/10.1002/ange.201915828

Weitere Informationen:

http://presse.angewandte.de

Dr. Karin J. Schmitz | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Elektronenbeugung zeigt winzige Kristalle in neuem Licht
24.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf
24.02.2020 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics