Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Luftig aber durstig

27.02.2013
Ultraleichte, flexible, feuerbeständige Kohlenstoff-Nanofaser-Aerogele aus bakterieller Cellulose

Sie saugen Unmengen an Öl oder organischen Lösungsmitteln auf, dabei sind sie fast so leicht wie Luft: hochporöse Feststoffe aus einem dreidimensionalen Geflecht von Kohlenstoff-Nanofasern.

Chinesische Wissenschaftler stellen in der Zeitschrift Angewandte Chemie nun ein einfaches Verfahren zur Herstellung dieser ultraleichten, flexiblen, feuerbeständigen Aerogele vor, das von bakterieller Cellulose als kostengünstigem Rohstoff ausgeht. Die faserigen Leichtgewichte können organische Schadstoffe aus verunreinigtem Wasser "heraussaugen" und könnten als Drucksensoren Einsatz finden.

Kohlenstoff-Aerogele sind aufgrund ihrer einzigartigen Eigenschaften - geringe Dichte, hohe Porosität, hohe spezifische Oberfläche sowie hohe elektrischer Leitfähigkeit - vielversprechende neue Materialien, beispielsweise als Träger für Katalysatoren, Elektroden für Superkondensatoren, Adsorbentien und Gassensoren, aber auch für künstliche Muskeln.

Was noch gesucht wird, ist eine einfache, wirtschaftliche und umweltfreundliche Methode zur Herstellung dieser attraktiven Leichtgewichte. Das Team um Shu-Hong Yu von der University of Science and Technology of China setzt auf eine Produktion aus Biomasse. Die Wahl fiel auf bakterielle Cellulose, eine gängige, kostengünstige, nichttoxische Biomasse, die aus einem verwobenen Netzwerk von Cellulose-Nanofasern besteht und problemlos großtechnisch durch eine mikrobielle Fermentation hergestellt werden kann.

Die Forscher schnitten kleine Stückchen der verwobenen Cellulose-Nanofasern zurecht. Diese wurden gefriergetrocknet und anschließend bei 1300 °C unter Argon pyrolisiert. Die Cellulose wird dabei in graphitischen Kohlenstoff umgewandelt, die Dichte nimmt ab, aber die Fasergeflecht-Struktur bleibt erhalten. So entsteht ein schwarzes, ultraleichtes, mechanisch stabiles, Aerogel. Da es porös und stark hydrophob ist, kann es organische Lösungsmittel und Öle adsorbieren - bis zum 106- bis 312fachen seines Eigengewichts. Aus einem Öl-Wasser-Gemisch saugt es das Öl hocheffizient und selektiv auf, das reine Wasser bleibt zurück. Damit ist das neue Aerogel ein idealer Kandidat zur Bekämpfung der Ölpest oder zum Aufsaugen unpolarer industrieller Schadstoffe. Die aufgenommenen Substanzen können durch Destillation oder Verbrennen leicht wieder entfernt und das Aerogel auf diese Weise mehrfach verwendet werden.

Bemerkenswert ist die außerordentliche Hitze- und Feuerbeständigkeit des Materials, das sich auch nach mehrmaligem Behandeln mit einer Brenner-Flamme weder in seiner Form noch in seiner inneren dreidimensionalen Porenstruktur verändert.

Die hohe elektrische Leitfähigkeit des Aerogels macht zudem elektronische Anwendungen denkbar. Das Material ist dabei mechanisch hochflexibel. Es lässt sich auf etwa 10 % seines Volumens zusammenpressen und dehnt sich anschließend wieder fast in die ursprüngliche Form aus. Die Leitfähigkeit nimmt mit zunehmender Kompression fast linear ab. Das Aerogel könnte daher als Drucksensor eingesetzt werden.

Angewandte Chemie: Presseinfo 08/2013

Autor: Shu-Hong Yu, University of Science and Technology of China, Hefei (P.R. China), http://staff.ustc.edu.cn/~yulab/

Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201209676

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo
18.12.2018 | Universität Ulm

nachricht Einheitliche Qualitätsstandards für die Virenforschung
18.12.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Bakterien ein Antibiotikum ausschalten

Forscher des HZI und HIPS haben entdeckt, dass resistente Bakterien den Wirkstoff Albicidin mithilfe eines massenhaft gebildeten Proteins einfangen und inaktivieren

Gegen die immer häufiger auftauchenden multiresistenten Keime verlieren gängige Antibiotika zunehmend ihre Wirkung. Viele Bakterien haben natürlicherweise...

Im Focus: How bacteria turn off an antibiotic

Researchers from the HZI and the HIPS discovered that resistant bacteria scavenge and inactivate the agent albicidin using a protein, which they produce in large amounts

Many common antibiotics are increasingly losing their effectiveness against multi-resistant pathogens, which are becoming ever more prevalent. Bacteria use...

Im Focus: Wenn sich Atome zu nahe kommen

„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden. Bei dieser Mikroskopiemethode wird eine Oberfläche durch mechanisches Abtasten abgebildet. Der Abtastsensor besteht aus einem Federbalken mit einer atomar scharfen Spitze. Der Federbalken wird in eine Schwingung mit konstanter Amplitude versetzt und Frequenzänderungen der Schwingung erlauben es, kleinste Kräfte im Piko-Newtonbereich zu messen. Ein Newton beträgt zum Beispiel die Gewichtskraft einer Tafel Schokolade, und ein Piko-Newton ist ein Millionstel eines Millionstels eines Newtons.

Da die Kräfte nicht direkt gemessen werden können, sondern durch die sogenannte Kraftspektroskopie über den Umweg einer Frequenzverschiebung bestimmt werden,...

Im Focus: Datenspeicherung mit einzelnen Molekülen

Forschende der Universität Basel berichten von einer neuen Methode, bei der sich der Aggregatzustand weniger Atome oder Moleküle innerhalb eines Netzwerks gezielt steuern lässt. Sie basiert auf der spontanen Selbstorganisation von Molekülen zu ausgedehnten Netzwerken mit Poren von etwa einem Nanometer Grösse. Im Wissenschaftsmagazin «small» berichten die Physikerinnen und Physiker von den Untersuchungen, die für die Entwicklung neuer Speichermedien von besonderer Bedeutung sein können.

Weltweit laufen Bestrebungen, Datenspeicher immer weiter zu verkleinern, um so auf kleinstem Raum eine möglichst hohe Speicherkapazität zu erreichen. Bei fast...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung 2019 in Essen: LED Produktentwicklung – Leuchten mit aktuellem Wissen

14.12.2018 | Veranstaltungen

Pro und Contra in der urologischen Onkologie

14.12.2018 | Veranstaltungen

Konferenz zu Usability und künstlicher Intelligenz an der Universität Mannheim

13.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ulmer Forscher beobachten Genomaktivierung "live" im Fischembryo

18.12.2018 | Biowissenschaften Chemie

Notsignal im Zellkern – neuartiger Mechanismus der Zellzykluskontrolle

18.12.2018 | Biowissenschaften Chemie

Neue Methode für sichere Brücken

18.12.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics