Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Living cells made to fluoresce

10.08.2010
Individual molecules and their dynamics can also be made visible in living cells using conventional fluorophores at a resolution of around 20 nanometers. How this is done is being revealed for the first time by researchers from Würzburg, Bielefeld, and New York in the journal “Nature Methods”.

What happens between the molecules in a cell? How can the various processes be rendered visible? The team led by Professor Markus Sauer has been looking into this issue at the University of Würzburg’s Biocenter. The group is deploying the very latest techniques in fluorescence microscopy, which offer outstanding temporal and spatial resolution.

How does fluorescence microscopy work? To put it simply, DNA, proteins, or other molecules in the cell are labeled with fluorescent dyes. If laser pulses are then “fired” at the cell, the labeled molecules are illuminated briefly. Their fluorescence signal, their “light echo” so to speak, can be made visible using technical tricks.

Optically switchable dyes deliver sharper images

Anyone wishing to image a number of individual proteins, for example, using fluorescence microscopy, is faced with a challenge: if all the proteins in the cell are illuminated at the same time, all that appears under the microscope is a blurred spot of light.

The reason for this is that the proteins lie too close together, their light signals overlap – like on a cruise ship where the light is on in all the cabins. From too far away the eye only sees a single spot of light. However, if the lights on board were to be switched on individually and only for a short time, it would be possible to make out the position of each cabin accurately. “If the ship were moving, this would, of course, have to be done quickly to prevent the light signals from becoming blurred,” says Markus Sauer.

This is the strategy that the Würzburg team is applying – using fluorophores that can be switched on and off by light signals that are “optically switchable”, as the researchers say. The result is significantly sharper images of the states in the cell.

Living cells can be examined using conventional dyes

Optically switchable fluorophores do not work in living cells because the presence of oxygen causes interference – this has been the prevailing opinion in science to date. But Sauer’s team, working with colleagues in Bielefeld and New York, has now shown for the first time that the opposite is true: “We have figured out the mechanism and know for a fact that it also works in living cells.”

What does this mechanism entail? Cells contain glutathione, which, following laser excitation, places most commercially available optically switchable dyes in a stable “off” state lasting several seconds. At the same time, a reaction with oxygen takes place, which switches the dyes back on but is very inefficient. “Most of the dye molecules are therefore continuously off, and this is precisely what is needed for the super-resolution imaging to work,” explains Professor Sauer.

Histones labeled in the cell nucleus

The scientists are parading their methodology in “Nature Methods” using the histones of living human cells. Histones are proteins that help pack DNA in the cell nucleus in a space-saving manner. There are five different histones; the researchers worked with variant 2B.

First of all, they coupled the histones of type 2B to a bacterial enzyme (dihydrofolate reductase). They then added the fluorophore, which they had earlier conjugated to the antibiotic trimethoprim. The trick here is that this antibiotic bonds very specifically with the enzyme, creating a makeshift bridge that is used to label the histones of type 2B with dyes.

Next step: to observe cell division

This method has enabled the researchers to confirm a known fact: DNA packed with histones moves around inside the cell nucleus and does so, depending on the phase of the cell cycle, at a speed of a few nanometers per second. Sauer: “The next step now is to track the process of cell division at a high resolution under the microscope.”

“Live Cell Super-Resolution Imaging with Trimethoprim Conjugates”, Richard Wombacher, Meike Heidbreder, Sebastian van de Linde, Michael P Sheetz, Mike Heilemann, Virginia W Cornish & Markus Sauer, Nature Methods, August 8, 2010, DOI 10.1038/nmeth.1489

Contact

Prof. Dr. Markus Sauer, Department of Biotechnology and Biophysics at the University of Würzburg, T +49 (0)931 31-88687, m.sauer@uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease
17.02.2020 | Science China Press

nachricht Catalyst deposition on fragile chips
17.02.2020 | Ruhr-University Bochum

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics