Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live aus dem Kleinhirn

03.05.2017

Um in einer sich ständig verändernden Umwelt zu überleben, muss das Gehirn Informationen der Sinnesorgane mit Informationen zur eigenen Körperbewegung kombinieren können. Motorisch komplexe Verhalten wie Laufen oder Radfahren wären kaum möglich ohne sensorisches Feedback zum Bodenkontakt der Füße oder zur eigenen Bewegung in Vergleich zur Umwelt. Wo die verschiedenen sensorischen und motorischen Informationen im Wirbeltier-Kleinhirn abgebildet werden, untersuchen Wissenschaftler des Max-Planck-Institut für Neurobiologie am Modell des Zebrafisches. Nun zeigt sich, dass das Kleinhirn - ein großer und wichtiger Teil auch des menschlichen Gehirns – wahrscheinlich anders arbeitet als angenommen.

Alle Wirbeltiere haben ein Kleinhirn. Die Bedeutung dieses Hirnbereichs zeigt sich nicht zuletzt dadurch, dass Kleinhirn-Körnerzellen mehr als die Hälfte aller Nervenzellen im Wirbeltiergehirn ausmachen. Zu den Aufgaben des Kleinhirns gehören die Koordination von Bewegungen, das Erlernen und die Feinabstimmung von Bewegungsabläufen, das Kalibrieren der Reflexe und möglicherweise auch höhere kognitive Prozesse wie Emotionen.


Der typische Aufbau des Kleinhirns findet sich bei Fischen (Bild) genauso wie bei Säugetieren.

MPI für Neurobiologie / Knogler

Obwohl seine Bedeutung für all diese Bereiche und auch die Anatomie und Verbindungen des Kleinhirns bekannt sind, ist seine Arbeitsweise in vieler Hinsicht immer noch unklar. So gibt es nur Theorien dazu, wie eingehende Informationen der verschiedenen Quellen im Kleinhirn von den Körnerzellen organisiert und integriert werden.

Körnerzellen bilden die Input-Schicht des Kleinhirns und sollen Informationen über externe Reize, aktuelle Körperposition und momentane Bewegungen übermitteln. Obwohl Körnerzellen die häufigsten Zellen im Wirbeltiergehirn sind, gestaltet sich das Aufzeichnen der Zellaktivität jedoch als äußerst schwierig.

Dies liegt daran, dass bereits ein kleines Säugetiergehirn wie das der Maus viele hunderttausend Körnerzellen besitzt, die über einen recht großen Hirnbereich verteilt sind. So kann die Aktivität immer nur von einem Teil der Zellen zeitgleich in einem Tier erfasst werden.

Im Fachjournal Current Biology berichten Laura Knogler und ihre Kollegen aus der Forschungsgruppe von Ruben Portugues am Max-Planck-Institut für Neurobiologie nun von ihren Ergebnissen zur Kleinhirnaktivität in den kleinen und durchsichtigen Zebrafischlarven. Mit der Wahl dieses Tiermodells war es den Wissenschaftlern erstmals möglich die Aktivität aller Körnerzellen in einem wachen, sich verhaltenden Wirbeltier zu untersuchen.

"Der große Vorteil beim Zebrafisch ist, dass sein Gehirn weniger als einen Quadratmillimeter groß ist und uns fluoreszierende Proteine durch ihr Aufleuchten zeigen können, welche Nervenzellen aktiv sind", erklärt Laura Knogler. Die Ergebnisse der Studie fasst sie wie folgt zusammen: "Wir waren überrascht, dass mit fast 50 Prozent sehr viele Körnerzellen des Kleinhirns bereits auf einen einzelnen, einfachen Stimulus reagierten – und einige Nervenzellen nur dann aktiv waren, wenn der Fisch schwamm."

Ruben Portugues, der Leiter der Forschungsgruppe, erklärt, warum diese Ergebnisse so unerwartet waren: "Seit den frühen 1970er Jahren gingen Wissenschaftler davon aus, dass einzelne sensorische Reize nur sehr wenige Körnerzellen aktivieren. Das können wir nicht bestätigen." Der Neurobiologe erklärt weiter, dass es noch viel zu lernen gibt darüber, wie Körnerzellen sensorische Reize und Bewegungen kodieren: "Zusammen mit den Erkenntnissen einiger kürzlich veröffentlichter Studien zeigen unsere Ergebnisse, dass wir unser geglaubtes Wissen über die Funktion des Kleinhirns noch einmal gründlich überdenken müssen."

Obwohl das Verhaltensspektrum von Zebrafischlarven im Vergleich zu manch anderen Wirbeltier-Ordnungen eher begrenzt ist, ist die dem Verhalten zugrundeliegende Kleinhirn-Struktur bei allen vergleichbar. Die Zebrafischlarve, mit ihrem kleineren Gehirn und den verfügbaren experimentellen Methoden ist daher ein ideales Modell um grundlegende Funktionen und Arbeitsweisen des Wirbeltier-Kleinhirns zu verstehen. Als nächsten Schritt auf diesem Weg wollen die Wissenschaftler der Portugues-Gruppe untersuchen, wie Körnerzellen dem Zebrafisch helfen, Bewegungen in Echtzeit zu koordinieren. Hierfür entwickeln die Forscher gerade Experimente mit virtueller Realität, in denen sich die Umgebung abhängig von den Bewegungen der Fische verändern kann.

ORIGINALVERÖFFENTLICHUNG
Laura D. Knogler, Daniil A. Markov, Elena I. dragomir, Vilim Stih, Ruben Portugues
Sensorimotor representations in cerebellar granule cells in zebrafish are dense, spatially organized, and non-temporally patterned
Current Biology, 20. April 2017

KONTAKT:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de

Dr. Ruben Portugues
Max-Planck-Forschungsgruppe Sensomotorische Kontrolle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3492
Email: rportugues@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/portugues - Webseite von Dr. Ruben Portugues am Max-Planck-Institut für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics