Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Live aus dem Kleinhirn

03.05.2017

Um in einer sich ständig verändernden Umwelt zu überleben, muss das Gehirn Informationen der Sinnesorgane mit Informationen zur eigenen Körperbewegung kombinieren können. Motorisch komplexe Verhalten wie Laufen oder Radfahren wären kaum möglich ohne sensorisches Feedback zum Bodenkontakt der Füße oder zur eigenen Bewegung in Vergleich zur Umwelt. Wo die verschiedenen sensorischen und motorischen Informationen im Wirbeltier-Kleinhirn abgebildet werden, untersuchen Wissenschaftler des Max-Planck-Institut für Neurobiologie am Modell des Zebrafisches. Nun zeigt sich, dass das Kleinhirn - ein großer und wichtiger Teil auch des menschlichen Gehirns – wahrscheinlich anders arbeitet als angenommen.

Alle Wirbeltiere haben ein Kleinhirn. Die Bedeutung dieses Hirnbereichs zeigt sich nicht zuletzt dadurch, dass Kleinhirn-Körnerzellen mehr als die Hälfte aller Nervenzellen im Wirbeltiergehirn ausmachen. Zu den Aufgaben des Kleinhirns gehören die Koordination von Bewegungen, das Erlernen und die Feinabstimmung von Bewegungsabläufen, das Kalibrieren der Reflexe und möglicherweise auch höhere kognitive Prozesse wie Emotionen.


Der typische Aufbau des Kleinhirns findet sich bei Fischen (Bild) genauso wie bei Säugetieren.

MPI für Neurobiologie / Knogler

Obwohl seine Bedeutung für all diese Bereiche und auch die Anatomie und Verbindungen des Kleinhirns bekannt sind, ist seine Arbeitsweise in vieler Hinsicht immer noch unklar. So gibt es nur Theorien dazu, wie eingehende Informationen der verschiedenen Quellen im Kleinhirn von den Körnerzellen organisiert und integriert werden.

Körnerzellen bilden die Input-Schicht des Kleinhirns und sollen Informationen über externe Reize, aktuelle Körperposition und momentane Bewegungen übermitteln. Obwohl Körnerzellen die häufigsten Zellen im Wirbeltiergehirn sind, gestaltet sich das Aufzeichnen der Zellaktivität jedoch als äußerst schwierig.

Dies liegt daran, dass bereits ein kleines Säugetiergehirn wie das der Maus viele hunderttausend Körnerzellen besitzt, die über einen recht großen Hirnbereich verteilt sind. So kann die Aktivität immer nur von einem Teil der Zellen zeitgleich in einem Tier erfasst werden.

Im Fachjournal Current Biology berichten Laura Knogler und ihre Kollegen aus der Forschungsgruppe von Ruben Portugues am Max-Planck-Institut für Neurobiologie nun von ihren Ergebnissen zur Kleinhirnaktivität in den kleinen und durchsichtigen Zebrafischlarven. Mit der Wahl dieses Tiermodells war es den Wissenschaftlern erstmals möglich die Aktivität aller Körnerzellen in einem wachen, sich verhaltenden Wirbeltier zu untersuchen.

"Der große Vorteil beim Zebrafisch ist, dass sein Gehirn weniger als einen Quadratmillimeter groß ist und uns fluoreszierende Proteine durch ihr Aufleuchten zeigen können, welche Nervenzellen aktiv sind", erklärt Laura Knogler. Die Ergebnisse der Studie fasst sie wie folgt zusammen: "Wir waren überrascht, dass mit fast 50 Prozent sehr viele Körnerzellen des Kleinhirns bereits auf einen einzelnen, einfachen Stimulus reagierten – und einige Nervenzellen nur dann aktiv waren, wenn der Fisch schwamm."

Ruben Portugues, der Leiter der Forschungsgruppe, erklärt, warum diese Ergebnisse so unerwartet waren: "Seit den frühen 1970er Jahren gingen Wissenschaftler davon aus, dass einzelne sensorische Reize nur sehr wenige Körnerzellen aktivieren. Das können wir nicht bestätigen." Der Neurobiologe erklärt weiter, dass es noch viel zu lernen gibt darüber, wie Körnerzellen sensorische Reize und Bewegungen kodieren: "Zusammen mit den Erkenntnissen einiger kürzlich veröffentlichter Studien zeigen unsere Ergebnisse, dass wir unser geglaubtes Wissen über die Funktion des Kleinhirns noch einmal gründlich überdenken müssen."

Obwohl das Verhaltensspektrum von Zebrafischlarven im Vergleich zu manch anderen Wirbeltier-Ordnungen eher begrenzt ist, ist die dem Verhalten zugrundeliegende Kleinhirn-Struktur bei allen vergleichbar. Die Zebrafischlarve, mit ihrem kleineren Gehirn und den verfügbaren experimentellen Methoden ist daher ein ideales Modell um grundlegende Funktionen und Arbeitsweisen des Wirbeltier-Kleinhirns zu verstehen. Als nächsten Schritt auf diesem Weg wollen die Wissenschaftler der Portugues-Gruppe untersuchen, wie Körnerzellen dem Zebrafisch helfen, Bewegungen in Echtzeit zu koordinieren. Hierfür entwickeln die Forscher gerade Experimente mit virtueller Realität, in denen sich die Umgebung abhängig von den Bewegungen der Fische verändern kann.

ORIGINALVERÖFFENTLICHUNG
Laura D. Knogler, Daniil A. Markov, Elena I. dragomir, Vilim Stih, Ruben Portugues
Sensorimotor representations in cerebellar granule cells in zebrafish are dense, spatially organized, and non-temporally patterned
Current Biology, 20. April 2017

KONTAKT:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de

Dr. Ruben Portugues
Max-Planck-Forschungsgruppe Sensomotorische Kontrolle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3492
Email: rportugues@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de/portugues - Webseite von Dr. Ruben Portugues am Max-Planck-Institut für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics