Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Licht im Maschinenraum eines Helferproteins

21.06.2016

Bewegungen in Proteinen mit hoher Orts- und Zeitauflösung zu beobachten: Das ermöglicht eine neue Technik, die Wissenschaftler der Universität Würzburg entwickelt haben. Sie liefern damit neue Einblicke in den Funktionsmechanismus ganz spezieller Proteine.

Proteine zählen zu den wichtigsten Funktionsträgern des Lebens. Gebildet aus langen Ketten von Aminosäuren, falten sie sich in hochgeordnete dreidimensionale Strukturen, ähnlich wie ein Origami-Puzzle. Gefaltete Proteine sind allerdings nicht starr, sondern veränderlich und in ständiger Bewegung. Somit können sie als molekulare Maschinen eine Vielzahl von Funktionen ausführen, die in ihrer Gesamtheit das Leben ausmachen.


Die Kombination aus Farbstoffmolekül und Tryptanophan liefert bisher ungekannte Einblicke in die Bewegungen des Proteins Hsp90.

Grafik: Hannes Neuweiler

Gedrängel in der Enge führt zu Fehlern

Lebende Zellen sind voll von solchen Proteinen, die sich während der Faltung und beim Ausführen ihrer Funktionen jedoch häufig ins Gehege kommen. „Kommt es bei diesem Gedränge zu Fehlern in der Faltung oder in der Funktion, können diese eine Reihe von Erkrankungen bis hin zu Krebs auslösen“, erklärt Dr. Hannes Neuweiler.

Neuweiler ist Gruppenleiter am Lehrstuhl für Biotechnologie & Biophysik der Universität Würzburg. Zusammen mit seiner Arbeitsgruppe hat er eine Technik entwickelt, durch die Proteine bei der Arbeit mit hoher Orts- und Zeitauflösung beobachtet werden können. In der aktuellen Ausgabe der Fachzeitschrift Nature Chemical Biology stellt die Gruppe die Ergebnisse ihrer Arbeit vor.

Neuweiler und sein Team haben sich für diese Arbeit auf sogenannte Helferproteine – in der Fachsprache Chaperone genannt, von englisch: „begleiten, bemuttern“ – konzentriert. „Chaperone greifen sich andere Proteine, die Hilfe benötigen. Sie helfen ihren ‚Patienten‘ bei der Faltung, aktivieren sie, indem sie ihre Form verändern, und verhindern unerwünschte Zusammenlagerungen“, erklärt Neuweiler.

Ein Hitzeschockprotein mit Heilkunst

Eine außergewöhnliche Variante solcher Helferproteine ist das Hitzeschockprotein Hsp90: Es zählt zu den am häufigsten vorkommenden Proteinen in der lebenden Zelle, wo es sich um eine sehr große Zahl von „Patienten“ kümmert, die unterschiedlichste Formen und Funktionen haben. „Die Heilkunst von Hsp90 ist jedoch ein Mysterium. Sein genauer Funktionsmechanismus ist bislang nur teilweise verstanden“, sagt Neuweiler.
Bekannt war: Das Chaperon ähnelt einer molekularen Klammer, die sich öffnet und schließt, während es seinen Patienten verarztet. Mit Hilfe kristallographischer Methoden und der Technik der Röntgenbeugung haben Forscher in der Vergangenheit atomar aufgelöste Strukturen von Hsp90 ermittelt, die Schnappschüsse aus dem Maschinenraum des Helferproteins zeigen. „Bis zum heutigen Tage war es jedoch nicht möglich, diese Mechanik von Hsp90 bei der Arbeit in wässriger Lösung zu beobachten“, so Neuweiler. Es fehlten Methoden, die solch lokale Bewegungen in Proteinen sichtbar machen können.

Ein Leuchtfeuer zeigt Strukturveränderungen

Das hat sich jetzt geändert: Die Würzburger Wissenschaftler haben hochauflösende Fluoreszenzsonden entwickelt, mit deren Hilfe es möglich ist, diese Bewegungen in Hsp90 zu beobachten. Wie ein Leuchtfeuer, das bei Strukturänderung ein- und ausgeschaltet wird, zeigen die Sonden an, wann und auf welcher Zeitskala eine Bewegung in der molekularen Maschine stattfindet.

Hierbei machen sich die Forscher das Phänomen der Fluoreszenzlöschung durch photoinduzierten Elektronentransfer (PET) zu Nutze. Das Prinzip: Synthetische Farbstoffmoleküle, die unter normalen Umständen Licht aussenden, werden bei Kontakt mit der natürlich vorkommenden Aminosäure Tryptophan durch eine photochemische Reaktion ausgeschaltet. Neuweiler und Mitarbeiter haben solche Farbstoffmoleküle nun an ausgewählte Stellen in Hsp90 in die Nachbarschaft von Tryptophan eingebracht und das Chaperon dadurch mit Bewegungsmeldern ausgestattet. Die Ergebnisse der Arbeit zeigen, dass sich lokale Strukturelemente in Hsp90 synchron bewegen, während die molekulare Klammer sich schließt. Das kooperierende Protein Aha1, ein sogenanntes Co-Chaperon, legt den Hebel eines ausgewählten Strukturelements von Hsp90 in einer frühen Phase um und beschleunigt somit den Vorgang.

In zukünftigen Arbeiten wollen die Wissenschaftler nun mit Hilfe der neuen Fluoreszenztechnik weitere Strukturänderungen in Hsp90 und die Wirkungsweise anderer Co-Chaperone beleuchten. Von den Untersuchungen am Einzelmolekül mit Hilfe sensitiver bildgebender Verfahren erwarten sie neue Einblicke in die Mechanik von Helferproteinen und damit auch Erkenntnisse über die Entstehung von Krankheiten.

“Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism”, Andrea Schulze, Gerti Beliu, Dominic A. Helmerich, Jonathan Schubert, Laurence H. Pearl, Chrisostomos Prodromou & Hannes Neuweiler. Nature Chemical Biology

Kontakt

Dr. Hannes Neuweiler, T: +49 931 31-83872, E-Mail: hannes.neuweiler@uni-wuerzburg.de

Weitere Informationen:

http://dx.doi.org/10.1038/nchembio.2111 Zur Originalpublikation

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

21.02.2020 | Physik Astronomie

Fit für die industrielle Fertigung? Aluminium-Batterien im Fokus des Verbundvorhabens „ProBaSol“ an der TU Freiberg

21.02.2020 | Energie und Elektrotechnik

Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen

21.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics