Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtspuren im Gehirn

11.08.2008
Indikator-Molekül ermöglicht erstmals Langzeitbeobachtung der Aktivität einzelner Nervenzellen

Wissenschaftler träumen schon lange davon, Nervenzellen im Gehirn direkt bei der Arbeit zu beobachten. So könnte zum Beispiel die Verarbeitung von Sinneseindrücken, die Veränderungen der Nervenzellen während eines Lernvorgangs, oder das Absterben von Nervenzellen im Alter und bei Krankheit untersucht werden.

Die dazu nötigen Langzeitbeobachtungen der Aktivität einzelner Nervenzellen waren jedoch bislang nicht möglich. Wissenschaftler des Max-Planck-Instituts für Neurobiologie haben nun ein Molekül entwickelt, dass von den Zellen selbst gebildet wird und zuverlässig über viele Wochen hinweg die Aktivität einzelner Nervenzellen anzeigt. Nature Methods, 10. August 2008

Das Gehirn bestimmt wer wir sind, was wir tun und wie wir die Welt wahrnehmen. Es ist daher kein Wunder, dass das Gehirn den Menschen schon immer faszinierte. Um zu verstehen wie das Gehirn funktioniert, muss man die "Sprache" der Nervenzellen verstehen - also das Muster ihrer elektrischen Aktivität interpretieren. Eine Schwierigkeit dabei ist, das Signal einer einzelnen Zelle aus den Signalen tausender Nachbarzellen herauszufiltern.

Ein einzelnes Signal über viele Wochen hinweg zu verfolgen, ist nahezu unmöglich. Diese Beobachtungen wären jedoch wichtig um zu erforschen, wie sich die Aktivität einzelner Zellen im Laufe einer Krankheit, während der Entwicklung und des Alterns, oder auch während Lernprozessen verändern. Solche Untersuchungen gehörten bislang ins Reich der Utopie.

Der Zellaktivität auf der Spur

In den letzten Jahren gab es jedoch wichtige Verbesserungen in den Untersuchungsmethoden. So wurden Fluoreszenz-Farbstoffe entwickelt, die die Aktivität einzelner Nervenzellen sichtbar machen. Die Grundlage dieser Farbstoffe sind synthetische Kalzium-Indikatoren, die auf die Bindung von Kalzium mit einer Veränderung ihrer Helligkeit reagieren. Kalzium kommt in jeder Nervenzelle vor und die Kalzium-Konzentration ändert sich, wenn eine Nervenzelle zum Beispiel ein elektrisches Signal weitergibt. Künstlich in eine Zelle eingebrachte Kalzium-Indikatoren können somit elektrische Signale der Zellen optisch sichtbar machen.

Zusätzlich hebt der fluoreszierende Farbstoff die damit gefüllte Zelle aus der Masse der Nervenzellen hervor und macht sie mit all ihren Verästelungen sichtbar. Mit Hilfe der modernen 2-Photonen-Mikroskopie können so die Aktivität und auch die Anatomie der markierten Zellen direkt im Gehirn studiert werden. Jedoch verblassen die künstlichen Farbstoffe meist nach kurzer Zeit wieder, was Langzeitbeobachtungen verhindert.

Eine Alternative zu den synthetisch hergestellten Farbstoffen sind genetisch kodierte Kalzium-Indikatoren. Diese Moleküle sind Proteine, die von einzelnen genetisch veränderten Nervenzellen selbst produziert werden. Ist die Nervenzelle aktiv, fluoreszieren die Indikator-Moleküle anstatt zuvor bläulich eher gelb. Störende Eingriffe von außen sind also nicht mehr nötig, um die Aktivität der Zellen sichtbar zu machen. Doch auch hier gibt es ein Problem: Im Vergleich zu den künstlichen Farbstoffen leuchteten diese genetisch-kodierten Indikator-Moleküle nur schwach und reagierten auch nur auf größere Änderungen in der Kalzium-Konzentration. So blieb eine schonende aber auch aussagekräftige Langzeitbeobachtung der Aktivität einzelner Nervenzellen weiterhin ein Wunschtraum.

TN-XXL: Die Antwort auf Forscherträume?

Dieser Traum scheint nun in Erfüllung zu gehen. Wissenschaftlern des Max-Planck-Instituts für Neurobiologie ist es gelungen, einen deutlich verbesserten Kalzium-Indikator zu entwickeln. TN-XXL, so der Name des Moleküls, ist viel empfindlicher als alle seine Vorgänger und reagiert schon auf kleinste Änderungen in der Aktivität von Nervenzellen. Da TN-XXL ständig von den Nervenzellen nachgebildet wird, ist die Leuchtkraft kontinuierlich hoch. So kann die Aktivität einzelner Nervenzellen über viele Wochen hinweg im intakten Gehirn beobachtet werden.

"TN-XXL sollte einigen Wirbel in den Neurowissenschaften verursachen", vermutet Oliver Griesbeck, der Leiter der Studie. Die nun erstmals mögliche Langzeitbeobachtung der Aktivität einzelner Nervenzellen ist eine wichtige Voraussetzung um zu verstehen, wie das Gehirn arbeitet und sich mit der Zeit verändert - sei es während seiner Entwicklung, des Alterns, oder um neue Informationen zu verarbeiten. Auch in der klinischen Forschung sieht Griesbeck Anwendungsmöglichkeiten für das neue Molekül: "TN-XXL kann zum Beispiel eingesetzt werden, um den Verlauf von Krankheiten oder die Effekte von Medikamenten im Körper zu verfolgen." Es sollte daher nicht lange dauern, bis TN-XXL neue Einblicke in die Arbeitsweise unseres Gehirns und auch unseres Körpers bringt.

Originalveröffentlichung:
Marco Mank, Alexandre Ferrão Santos, Stephan Direnberger, Thomas D. Mrsic-Flogel, Sonja B. Hofer, Valentin Stein, Thomas Hendel, Dierk F. Reiff, Christiaan Levelt, Alexander Borst, Tobias Bonhoeffer, Mark Hübener, Oliver Griesbeck
A genetically encoded calcium indicator for chronic in vivo two photon imaging
Nature Methods, 10. August 2008
Kontakt:
Dr. Stefanie Merker
Öffentlichkeitsarbeit
Am Klopferspitz 18, 82152 Martinsried
Tel: 089 - 8578 3514, Fax: 089 - 8995 0022
merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/junior/celldyn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

nachricht Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze
18.07.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics