Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtende Herzzellen: Quallen-Proteine helfen bei der Erforschung von Herzrhythmusstörungen

05.09.2016

Für die Erforschung von Erkrankungen wie Herzrhythmusstörungen spielen Zellmodelle aus Stammzellen eine zunehmend wichtige Rolle. Forscherinnen und Forschern der Technischen Universität München (TUM) ist es gelungen, Zellen herzustellen, die neuen Einblick in die Eigenschaften des Herzens bieten. Sie haben einen molekularen Sensor in die Zellen eingebaut, der Licht aussendet und dadurch nicht nur das elektrische Potential der Zellen sichtbar macht, sondern es erstmals auch möglich macht, Zelltypen schnell zu identifizieren.

Seit etwa zehn Jahren ist es möglich, aus sogenannten induzierten pluripotenten Stammzellen im Labor Herzzellen herzustellen. Diese Stammzellen werden beispielsweise aus weißen Blutkörperchen gewonnen und können im Labor unbegrenzt vermehrt und zu allen möglichen Körperzellen weitergezüchtet werden.


Ein molekulare Sensor macht es möglich, das Aktionspotenzial einzelner Herzzellen zu beobachten. (Foto: Alessandra Moretti /TUM)

Auf diese Weise hergestellte Herzzellen machen es zum Beispiel möglich, Herzrhythmusstörungen intensiver zu untersuchen, als es bisher möglich war. Tierversuche sind für diese Aufgabe nur sehr bedingt geeignet, und Gewebeproben kann man aus den Herzen von Patientinnen und Patienten auch nicht ohne weiteres entnehmen. In den gezüchteten Herzzellen dagegen lassen sich Erkrankungen sozusagen im Miniaturformat untersuchen.

„Unsere Entwicklung löst gleich mehrere Probleme, die die Arbeit mit solchen Zellmodellen bisher erschwert haben“, sagt Dr. Daniel Sinnecker, Kardiologe am Klinikum rechts der Isar der TUM. Auch bei den Laborzellen stellt sich die Frage danach, wie man ihre elektrische Aktivität am besten messen kann. Bisher wurden für diese Aufgabe meist Mikroelektroden genutzt, mit denen elektrische Signale direkt von den Zellen abgeleitet werden. Das Problem: Diese Prozedur ist sehr aufwendig und erlaubt es daher nur eine sehr kleine Zahl von Herzzellen zu untersuchen.

Unterschiede zwischen Zelltypen

Hinzu kommt, dass Herzzelle nicht gleich Herzzelle ist. Grundsätzlich sind alle Herzzellen in der Lage, sich im Takt selbständig zusammenzuziehen und elektrische Signale an benachbarte Zellen weiterzuleiten. Die Zellen, die die verschiedenen Strukturen des Herzens bilden – beispielsweise die Vorhöfe, die Herzkammern oder den Sinusknoten, den „Taktgeber“ – unterscheiden sich zum Beispiel deutlich in ihren „Aktionspotentialen“. Das sind die Schwankungen in der elektrischen Spannung zwischen Zellinnerem und Zelläußerem, die als elektrisches Signal den Erregungsablauf im Herzen steuern und dafür verantwortlich sind, dass es sich zusammenzieht.

Dieser Unterschied macht sich bei der Untersuchung von Rhythmusstörungen bemerkbar, die auf Fehlfunktionen bestimmter Areale des Herzmuskels beruhen: Züchtet man Herzzellen aus Stammzellen, lässt sich bisher nur unzureichend beeinflussen, ob Herzkammerzellen, Herzvorhof- oder Sinusknotenzellen entstehen. Um welche Sorte es sich handelt, muss erst mühsam bei jeder einzelnen Zelle festgestellt werden, um eine bestimmte Störung sinnvoll zu untersuchen.

Biologische Sensoren statt Mikroelektroden

Daniel Sinnecker und sein Team beschreiben im „European Heart Journal“ eine mögliche Lösung für diese beiden Probleme. Anstatt den Zellen mit Mikroelektroden zu Leibe zu rücken, versehen die Wissenschaftlerinnen und Wissenschaftler sie mit biologischen Sensoren. Diese sind aus fluoreszierenden, also leuchtenden, Proteinen aus Tiefseequallen aufgebaut. Die DNA, die den „Bauplan“ dieser Sensorproteine enthält, wird in die Herzzellen eingeschleust, woraufhin diese selbst die Sensorproteine herstellen. Werden die so veränderten Herzzellen mit Licht in einer bestimmten Wellenlänge angeregt, leuchten sie in einer anderen Wellenlänge zurück. Die genaue Farbe des zurückgestrahlten Lichts hängt dabei von der Spannungsdifferenz zwischen Zellinnerem und Zelläußerem ab. Mit einer speziellen Kamera kann man deswegen das Aktionspotential der einzelnen Zellen aufzeichnen und messen.

Die Besonderheit der neuen Methode liegt darin, dass die eingeschleuste DNA mit bestimmten Erkennungssequenzen, sogenannten Promotoren, versehen werden kann. Diese sorgen dafür, dass das Sensorprotein nur in bestimmten Typen von Herzmuskelzellen hergestellt wird. So kann man je nach Bedarf gezielt nur die elektrischen Signale aus Vorhofzellen, aus Herzkammer- oder aus Sinusknotenzellen erfassen.

Neue Möglichkeiten für Medikamenten-Tests

Im Gegensatz zu der umständlichen Mikroelektroden-Technik ist diese Methode deutlich leistungsfähiger. „Schon jetzt können wir hunderte Zellen an einem Tag untersuchen statt nur einer Handvoll", sagt Zhifen Chen, Erstautorin der Studie. „Dieser Prozess ließe sich prinzipiell automatisieren und hochskalieren, so dass Tausende Zellen zugleich untersucht werden könnten.“

„In Zukunft könnte man unsere Methode nicht nur anwenden, um Erkrankungen im Labor zu modellieren“, sagt Daniel Sinnecker. „Dadurch, dass wir Zellen in großer Zahl untersuchen können, ließe sich die Methode auch für groß angelegte Medikamententests nutzen, in denen zum Beispiel geprüft wird, ob ein Produkt negative Auswirkungen auf den Herzmuskel hat.“ Eine Herausforderung für solche neuartigen Verfahren liegt darin, die Zellen in der dafür benötigten Menge zu züchten. Daniel Sinnecker und sein Team arbeiten derzeit daran, die Empfindlichkeit ihrer Methode zu steigern.

Originalpublikation:

Z. Chen, W. Xian, M. Bellin, T. Dorn, Q. Tian, A. Goedel, L. Dreizehnter, C. M. Schneider, D. Ward-van Oostwaard, J. King Man Ng, R. Hinkel, L. S. Pane, C. L. Mummery, P. Lipp, A. Moretti, K.-L. Laugwitz, D. Sinnecker. "Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes". Eur Heart J (2016). DOI: http://dx.doi.org/10.1093/eurheartj/ehw189

Pressekontakt:

Paul Hellmich
Corporate Communications Center
Technische Universität München (TUM)
Tel.: +49 (89) 289-22731
E-Mail: paul.hellmich@tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Krebszellen Winterschlaf halten
16.07.2018 | Universitätsklinikum Carl Gustav Carus Dresden

nachricht Feinstaub macht Bäume anfälliger gegen Trockenheit
16.07.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg

16.07.2018 | Architektur Bauwesen

Feinstaub macht Bäume anfälliger gegen Trockenheit

16.07.2018 | Biowissenschaften Chemie

Wie Krebszellen Winterschlaf halten

16.07.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics