Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtende Herzzellen: Quallen-Proteine helfen bei der Erforschung von Herzrhythmusstörungen

05.09.2016

Für die Erforschung von Erkrankungen wie Herzrhythmusstörungen spielen Zellmodelle aus Stammzellen eine zunehmend wichtige Rolle. Forscherinnen und Forschern der Technischen Universität München (TUM) ist es gelungen, Zellen herzustellen, die neuen Einblick in die Eigenschaften des Herzens bieten. Sie haben einen molekularen Sensor in die Zellen eingebaut, der Licht aussendet und dadurch nicht nur das elektrische Potential der Zellen sichtbar macht, sondern es erstmals auch möglich macht, Zelltypen schnell zu identifizieren.

Seit etwa zehn Jahren ist es möglich, aus sogenannten induzierten pluripotenten Stammzellen im Labor Herzzellen herzustellen. Diese Stammzellen werden beispielsweise aus weißen Blutkörperchen gewonnen und können im Labor unbegrenzt vermehrt und zu allen möglichen Körperzellen weitergezüchtet werden.


Ein molekulare Sensor macht es möglich, das Aktionspotenzial einzelner Herzzellen zu beobachten. (Foto: Alessandra Moretti /TUM)

Auf diese Weise hergestellte Herzzellen machen es zum Beispiel möglich, Herzrhythmusstörungen intensiver zu untersuchen, als es bisher möglich war. Tierversuche sind für diese Aufgabe nur sehr bedingt geeignet, und Gewebeproben kann man aus den Herzen von Patientinnen und Patienten auch nicht ohne weiteres entnehmen. In den gezüchteten Herzzellen dagegen lassen sich Erkrankungen sozusagen im Miniaturformat untersuchen.

„Unsere Entwicklung löst gleich mehrere Probleme, die die Arbeit mit solchen Zellmodellen bisher erschwert haben“, sagt Dr. Daniel Sinnecker, Kardiologe am Klinikum rechts der Isar der TUM. Auch bei den Laborzellen stellt sich die Frage danach, wie man ihre elektrische Aktivität am besten messen kann. Bisher wurden für diese Aufgabe meist Mikroelektroden genutzt, mit denen elektrische Signale direkt von den Zellen abgeleitet werden. Das Problem: Diese Prozedur ist sehr aufwendig und erlaubt es daher nur eine sehr kleine Zahl von Herzzellen zu untersuchen.

Unterschiede zwischen Zelltypen

Hinzu kommt, dass Herzzelle nicht gleich Herzzelle ist. Grundsätzlich sind alle Herzzellen in der Lage, sich im Takt selbständig zusammenzuziehen und elektrische Signale an benachbarte Zellen weiterzuleiten. Die Zellen, die die verschiedenen Strukturen des Herzens bilden – beispielsweise die Vorhöfe, die Herzkammern oder den Sinusknoten, den „Taktgeber“ – unterscheiden sich zum Beispiel deutlich in ihren „Aktionspotentialen“. Das sind die Schwankungen in der elektrischen Spannung zwischen Zellinnerem und Zelläußerem, die als elektrisches Signal den Erregungsablauf im Herzen steuern und dafür verantwortlich sind, dass es sich zusammenzieht.

Dieser Unterschied macht sich bei der Untersuchung von Rhythmusstörungen bemerkbar, die auf Fehlfunktionen bestimmter Areale des Herzmuskels beruhen: Züchtet man Herzzellen aus Stammzellen, lässt sich bisher nur unzureichend beeinflussen, ob Herzkammerzellen, Herzvorhof- oder Sinusknotenzellen entstehen. Um welche Sorte es sich handelt, muss erst mühsam bei jeder einzelnen Zelle festgestellt werden, um eine bestimmte Störung sinnvoll zu untersuchen.

Biologische Sensoren statt Mikroelektroden

Daniel Sinnecker und sein Team beschreiben im „European Heart Journal“ eine mögliche Lösung für diese beiden Probleme. Anstatt den Zellen mit Mikroelektroden zu Leibe zu rücken, versehen die Wissenschaftlerinnen und Wissenschaftler sie mit biologischen Sensoren. Diese sind aus fluoreszierenden, also leuchtenden, Proteinen aus Tiefseequallen aufgebaut. Die DNA, die den „Bauplan“ dieser Sensorproteine enthält, wird in die Herzzellen eingeschleust, woraufhin diese selbst die Sensorproteine herstellen. Werden die so veränderten Herzzellen mit Licht in einer bestimmten Wellenlänge angeregt, leuchten sie in einer anderen Wellenlänge zurück. Die genaue Farbe des zurückgestrahlten Lichts hängt dabei von der Spannungsdifferenz zwischen Zellinnerem und Zelläußerem ab. Mit einer speziellen Kamera kann man deswegen das Aktionspotential der einzelnen Zellen aufzeichnen und messen.

Die Besonderheit der neuen Methode liegt darin, dass die eingeschleuste DNA mit bestimmten Erkennungssequenzen, sogenannten Promotoren, versehen werden kann. Diese sorgen dafür, dass das Sensorprotein nur in bestimmten Typen von Herzmuskelzellen hergestellt wird. So kann man je nach Bedarf gezielt nur die elektrischen Signale aus Vorhofzellen, aus Herzkammer- oder aus Sinusknotenzellen erfassen.

Neue Möglichkeiten für Medikamenten-Tests

Im Gegensatz zu der umständlichen Mikroelektroden-Technik ist diese Methode deutlich leistungsfähiger. „Schon jetzt können wir hunderte Zellen an einem Tag untersuchen statt nur einer Handvoll", sagt Zhifen Chen, Erstautorin der Studie. „Dieser Prozess ließe sich prinzipiell automatisieren und hochskalieren, so dass Tausende Zellen zugleich untersucht werden könnten.“

„In Zukunft könnte man unsere Methode nicht nur anwenden, um Erkrankungen im Labor zu modellieren“, sagt Daniel Sinnecker. „Dadurch, dass wir Zellen in großer Zahl untersuchen können, ließe sich die Methode auch für groß angelegte Medikamententests nutzen, in denen zum Beispiel geprüft wird, ob ein Produkt negative Auswirkungen auf den Herzmuskel hat.“ Eine Herausforderung für solche neuartigen Verfahren liegt darin, die Zellen in der dafür benötigten Menge zu züchten. Daniel Sinnecker und sein Team arbeiten derzeit daran, die Empfindlichkeit ihrer Methode zu steigern.

Originalpublikation:

Z. Chen, W. Xian, M. Bellin, T. Dorn, Q. Tian, A. Goedel, L. Dreizehnter, C. M. Schneider, D. Ward-van Oostwaard, J. King Man Ng, R. Hinkel, L. S. Pane, C. L. Mummery, P. Lipp, A. Moretti, K.-L. Laugwitz, D. Sinnecker. "Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes". Eur Heart J (2016). DOI: http://dx.doi.org/10.1093/eurheartj/ehw189

Pressekontakt:

Paul Hellmich
Corporate Communications Center
Technische Universität München (TUM)
Tel.: +49 (89) 289-22731
E-Mail: paul.hellmich@tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle
19.06.2019 | Ruhr-Universität Bochum

nachricht Wie sich Bakterien gegen Plasmabehandlung schützen
19.06.2019 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Universität Jena mit innovativer Lasertechnik auf Photonik-Messe in München vertreten

19.06.2019 | Messenachrichten

Meilenstein für starke Zusammenarbeit: Neuer Standort für Rittal und Eplan in Italien

19.06.2019 | Unternehmensmeldung

Katalyse: Hohe Reaktionsraten auch ohne Edelmetalle

19.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics