Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Leuchtende Herzzellen: Quallen-Proteine helfen bei der Erforschung von Herzrhythmusstörungen

05.09.2016

Für die Erforschung von Erkrankungen wie Herzrhythmusstörungen spielen Zellmodelle aus Stammzellen eine zunehmend wichtige Rolle. Forscherinnen und Forschern der Technischen Universität München (TUM) ist es gelungen, Zellen herzustellen, die neuen Einblick in die Eigenschaften des Herzens bieten. Sie haben einen molekularen Sensor in die Zellen eingebaut, der Licht aussendet und dadurch nicht nur das elektrische Potential der Zellen sichtbar macht, sondern es erstmals auch möglich macht, Zelltypen schnell zu identifizieren.

Seit etwa zehn Jahren ist es möglich, aus sogenannten induzierten pluripotenten Stammzellen im Labor Herzzellen herzustellen. Diese Stammzellen werden beispielsweise aus weißen Blutkörperchen gewonnen und können im Labor unbegrenzt vermehrt und zu allen möglichen Körperzellen weitergezüchtet werden.


Ein molekulare Sensor macht es möglich, das Aktionspotenzial einzelner Herzzellen zu beobachten. (Foto: Alessandra Moretti /TUM)

Auf diese Weise hergestellte Herzzellen machen es zum Beispiel möglich, Herzrhythmusstörungen intensiver zu untersuchen, als es bisher möglich war. Tierversuche sind für diese Aufgabe nur sehr bedingt geeignet, und Gewebeproben kann man aus den Herzen von Patientinnen und Patienten auch nicht ohne weiteres entnehmen. In den gezüchteten Herzzellen dagegen lassen sich Erkrankungen sozusagen im Miniaturformat untersuchen.

„Unsere Entwicklung löst gleich mehrere Probleme, die die Arbeit mit solchen Zellmodellen bisher erschwert haben“, sagt Dr. Daniel Sinnecker, Kardiologe am Klinikum rechts der Isar der TUM. Auch bei den Laborzellen stellt sich die Frage danach, wie man ihre elektrische Aktivität am besten messen kann. Bisher wurden für diese Aufgabe meist Mikroelektroden genutzt, mit denen elektrische Signale direkt von den Zellen abgeleitet werden. Das Problem: Diese Prozedur ist sehr aufwendig und erlaubt es daher nur eine sehr kleine Zahl von Herzzellen zu untersuchen.

Unterschiede zwischen Zelltypen

Hinzu kommt, dass Herzzelle nicht gleich Herzzelle ist. Grundsätzlich sind alle Herzzellen in der Lage, sich im Takt selbständig zusammenzuziehen und elektrische Signale an benachbarte Zellen weiterzuleiten. Die Zellen, die die verschiedenen Strukturen des Herzens bilden – beispielsweise die Vorhöfe, die Herzkammern oder den Sinusknoten, den „Taktgeber“ – unterscheiden sich zum Beispiel deutlich in ihren „Aktionspotentialen“. Das sind die Schwankungen in der elektrischen Spannung zwischen Zellinnerem und Zelläußerem, die als elektrisches Signal den Erregungsablauf im Herzen steuern und dafür verantwortlich sind, dass es sich zusammenzieht.

Dieser Unterschied macht sich bei der Untersuchung von Rhythmusstörungen bemerkbar, die auf Fehlfunktionen bestimmter Areale des Herzmuskels beruhen: Züchtet man Herzzellen aus Stammzellen, lässt sich bisher nur unzureichend beeinflussen, ob Herzkammerzellen, Herzvorhof- oder Sinusknotenzellen entstehen. Um welche Sorte es sich handelt, muss erst mühsam bei jeder einzelnen Zelle festgestellt werden, um eine bestimmte Störung sinnvoll zu untersuchen.

Biologische Sensoren statt Mikroelektroden

Daniel Sinnecker und sein Team beschreiben im „European Heart Journal“ eine mögliche Lösung für diese beiden Probleme. Anstatt den Zellen mit Mikroelektroden zu Leibe zu rücken, versehen die Wissenschaftlerinnen und Wissenschaftler sie mit biologischen Sensoren. Diese sind aus fluoreszierenden, also leuchtenden, Proteinen aus Tiefseequallen aufgebaut. Die DNA, die den „Bauplan“ dieser Sensorproteine enthält, wird in die Herzzellen eingeschleust, woraufhin diese selbst die Sensorproteine herstellen. Werden die so veränderten Herzzellen mit Licht in einer bestimmten Wellenlänge angeregt, leuchten sie in einer anderen Wellenlänge zurück. Die genaue Farbe des zurückgestrahlten Lichts hängt dabei von der Spannungsdifferenz zwischen Zellinnerem und Zelläußerem ab. Mit einer speziellen Kamera kann man deswegen das Aktionspotential der einzelnen Zellen aufzeichnen und messen.

Die Besonderheit der neuen Methode liegt darin, dass die eingeschleuste DNA mit bestimmten Erkennungssequenzen, sogenannten Promotoren, versehen werden kann. Diese sorgen dafür, dass das Sensorprotein nur in bestimmten Typen von Herzmuskelzellen hergestellt wird. So kann man je nach Bedarf gezielt nur die elektrischen Signale aus Vorhofzellen, aus Herzkammer- oder aus Sinusknotenzellen erfassen.

Neue Möglichkeiten für Medikamenten-Tests

Im Gegensatz zu der umständlichen Mikroelektroden-Technik ist diese Methode deutlich leistungsfähiger. „Schon jetzt können wir hunderte Zellen an einem Tag untersuchen statt nur einer Handvoll", sagt Zhifen Chen, Erstautorin der Studie. „Dieser Prozess ließe sich prinzipiell automatisieren und hochskalieren, so dass Tausende Zellen zugleich untersucht werden könnten.“

„In Zukunft könnte man unsere Methode nicht nur anwenden, um Erkrankungen im Labor zu modellieren“, sagt Daniel Sinnecker. „Dadurch, dass wir Zellen in großer Zahl untersuchen können, ließe sich die Methode auch für groß angelegte Medikamententests nutzen, in denen zum Beispiel geprüft wird, ob ein Produkt negative Auswirkungen auf den Herzmuskel hat.“ Eine Herausforderung für solche neuartigen Verfahren liegt darin, die Zellen in der dafür benötigten Menge zu züchten. Daniel Sinnecker und sein Team arbeiten derzeit daran, die Empfindlichkeit ihrer Methode zu steigern.

Originalpublikation:

Z. Chen, W. Xian, M. Bellin, T. Dorn, Q. Tian, A. Goedel, L. Dreizehnter, C. M. Schneider, D. Ward-van Oostwaard, J. King Man Ng, R. Hinkel, L. S. Pane, C. L. Mummery, P. Lipp, A. Moretti, K.-L. Laugwitz, D. Sinnecker. "Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes". Eur Heart J (2016). DOI: http://dx.doi.org/10.1093/eurheartj/ehw189

Pressekontakt:

Paul Hellmich
Corporate Communications Center
Technische Universität München (TUM)
Tel.: +49 (89) 289-22731
E-Mail: paul.hellmich@tum.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Algen und Kohlefasern die Kohlendioxidkonzentration in der Atmosphäre nachhaltig senken könnten
14.11.2018 | Technische Universität München

nachricht Unbekannter Hemmmechanismus für Humanes Cytomegalievirus entdeckt
14.11.2018 | TWINCORE - Zentrum für Experimentelle und Klinische Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungsnachrichten

Die Umgebung macht das Molekül zum Schalter

14.11.2018 | Physik Astronomie

Mit Gold Krankheiten aufspüren

14.11.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics