Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lernen braucht rhythmische Aktivität von Nervenzellen

19.09.2012
Gedächtnisbildende Signalübertragung im Hippokampus aufgeklärt

Der Hippokampus ist eine wichtige Gehirnstruktur für das Lernen. Wissenschaftler des Max-Planck-Instituts für Psychiatrie in München haben herausgefunden, wie er elektrische Nervenzellsignale über eine Eingangs- und Ausgangskontrolle filtert und so Lern- und Erinnerungsprozesse steuert.


Schematische Darstellung des 3-Synapsen-Schaltkreises im Hippokampus (rot) und der Position der Stimulationselektrode (Stim). Die Aktivität der Nervenzellen wurde mittels Fluoreszenzfarbstoffen, die auf Spannungsänderungen reagieren, und einem Fluoreszenzmikroskop (VSDI) gemessen. Mikroelektroden in der CA1- und CA3-Region registrieren die elektrischen Signale.
© MPI für Psychiatrie


Echtzeitdarstellung einer Aktivitätswelle durch den Hippokampus. Die Aktivitätswelle entsteht durch Stimulation der Eingangsregion mit einer Mikroelektrode (schwarzer Pfeil) und wird mit spannungsabhängigen Farbstoffen aufgezeichnet. Wärmere Farben repräsentieren stärkere Nervenzellaktivität.
© MPI für Psychiatrie

Für eine wirkungsvolle Signalweiterleitung benötigt es demnach sogenannte theta-frequente Impulse der Hirnrinde. Diese Impulse mit einer Frequenz von drei bis acht Hertz lösen elektrische Aktivitätswellen durch den Hippokampus aus. Impulse anderer Frequenz rufen keine bzw. eine wesentlich schwächere Übertragung hervor. Für das Lernen notwendige Signalübertragung in andere Hirnareale durch Langzeitpotenzierung (LTP) entsteht wiederum nur, wenn die Aktivitätswellen für eine bestimmte Zeit andauern. Die Wissenschaftler haben sogar eine Erklärung dafür parat, warum wir nach einer Tasse Kaffee oder in einer akuten Stresssituation kurzzeitig geistig leistungsfähiger sind: In ihren Experimenten verstärkten Koffein und das Stresshormon Kortikosteron den Aktivitätsfluss.

Wenn wir etwas lernen und uns an etwas erinnern, müssen wir uns auf die entsprechende Information konzentrieren und sie immer wieder aufnehmen. Warum das so ist, zeigen nun elektrophysiologische Experimente am Tiermodell der Maus. Wissenschaftler der Arbeitsgruppe von Matthias Eder haben dazu die Übertragung elektrischer Impulse zwischen Nervenzellen im Hippokampus des Gehirns von Mäusen gemessen. Unter dem Fluoreszenzmikroskop konnten sie in Echtzeit beobachten, wie die Nervenzellen Signale weiterleiten.

Jens Stepan, Nachwuchswissenschaftler am Münchner Max-Planck-Institut, stimulierte die Eingangsregion zum Hippokampus mit elektrischen Impulsen unterschiedlicher Frequenz. Dabei gelang ihm erstmalig der Nachweis, dass es spezifisch theta-frequente Stimulationen mit einer Frequenz sind, die eine effektive Impulsweiterleitung über die hippocampale CA3/CA1-Region erzeugt. Ein Befund mit besonderer Bedeutung, da aus früheren Studien bekannt ist, dass theta-rhythmische Nervenzellaktivität im entorhinalen Kortex immer dann auftritt, wenn konzentriert neue Informationen aufgenommen werden. Die Forscher zeigen mit diesem Ergebnis, dass der Hippokampus höchst selektiv auf die entorhinalen Signale reagiert. Er ist offensichtlich in der Lage, wichtige, also eventuell erinnerungswürdige, von unwichtiger, also am besten gar nicht erst wahrzunehmender Information zu unterscheiden und physiologisch gezielt zu verarbeiten.

Eine mögliche Reaktion ist die Entstehung der so genannten Langzeitpotenzierung (LTP, long-term potentiation) der Signalübertragung an CA3-CA1 Synapsen, welche für das Lernen und die langfristige Gedächtnisbildung häufig unentbehrlich ist. Die aktuelle Studie dokumentiert, dass dieses CA1-LTP nur dann auftritt, wenn die Aktivitätswellen durch den Hippokampus für eine bestimmte Zeit andauern. Auf unser Lernverhalten übersetzt folgt daraus, um uns z.B. ein Bild einzuprägen, sollten wir es konzentriert für einige Zeit betrachten, denn nur dann produzieren wir für eine ausreichend lange Zeit die beschriebenen Aktivitätswellen und speichern das Bild auch in unserem Gehirn ab.

Matthias Eder und seinen Kollegen gelang es mit dieser Studie eine bisherige Wissenslücke zu schließen. „Die von uns hier untersuchte neuronale Kommunikation über die drei hippocampalen Nervenzellverschaltungen liefert uns ein neues Verständnis vom Lernen im lebenden Organismus. Wir zeigen erstmalig, dass die Langzeitpotenzierung von Frequenz und Dauer eingehender sensorischer Signale in den Hippokampus abhängt“, sagt Matthias Eder.

Ansprechpartner

Dr. Barbara Meyer
Max-Planck-Institut für Psychiatrie, München
Telefon: +49 89 30622-616
Fax: +49 89 30622-348
Email: bmeyer@­mpipsykl.mpg.de
Originalveröffentlichung
Jens Stepan, Julien Dine, Thomas Fenzl, Stephanie A. Polta, Gregor von Wolff, Carsten T. Wotjak and Matthias Eder
Entorhinal theta-frequency input to the dentate gyrus trisynaptically evokes hippocampal CA1 LTP

Frontiers in Neural Circuits 2012, Band 6, Artikel 64, Seite 1-13

Dr. Barbara Meyer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6354106/lernen_nervenzellen-hippokampus

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics