Langanhaltende und präzise Dosierung von Arzneimitteln dank Öl-Hydrogel-Gemisch: Aktive Tröpfchen

Fluoreszenzmikroskopisches Bild von in ein Hydrogel eingebetteten, hydrolysierbaren Öltröpfchen. Bild: Benedikt Rieß / TUM

Eigentlich war Prof. Job Boekhoven auf der Suche nach dem Ursprung des Lebens: Zusammen mit seinem Team an der Technischen Universität München (TUM) wollte der Chemiker herausfinden, wie es seinerzeit Molekülen im Urozean gelungen ist, sich zusammenzuschließen und Vorläufer der ersten lebenden Zellen zu bilden.

„Bei dieser Forschungsarbeit haben wir unter anderem mit Öltröpfchen experimentiert. Die Tröpfchen sind in Wasser schlecht löslich und daher sehr stabil. In ihrem Inneren können Moleküle komplexe Strukturen bilden – das Öl schützt diese Moleküle, indem es Wasser von ihnen fernhält.“

Der ölige Schutzschild ist jedoch nicht völlig undurchlässig: Einzelne Moleküle reagieren mit dem Wasser der Umgebung. Durch diese Hydrolyse werden die Tröpfchen langsam aber kontinuierlich kleiner, bis sie irgendwann ganz verschwunden sind. „Die Beobachtung dieser „aktiven Tröpfchen“, die Moleküle an das Wasser abgeben, brachte uns auf die Idee, sie für die Dosierung von Medikamenten zu nutzen“, erinnert sich Boekhoven.

Sicher vor Über- oder Unterdosierung

Die Frage, wie man Wirkstoffe kontinuierlich verabreichen kann, beschäftigt Pharmakologen seit langem. Die Inhaltsstoffe von Medikamenten werden normalerweise schnell freigesetzt, die Wirkung hält daher nicht lange an. Damit besteht zunächst die Gefahr einer Überdosierung, später droht dann Unterdosierung.

Sollen die Inhaltsstoffe über mehrere Tage wirken, musste man sie bisher in speziell perforierten Kapseln verabreichen – durch deren kleine Löcher kann immer nur eine bestimmte Menge eines Wirkstoffs nach außen dringen.

„Mit Hilfe der hydrolisierbaren Öltröpfchen lässt sich eine kontinuierliche Dosierung sehr einfach realisieren“, erklärt Boekhoven. „Man braucht dafür nur drei Komponenten: die Öltröpfchen, den Wirkstoff und ein Hydrogel, das die Position der Tröpfchen stabilisiert.

Viele Einsatzfelder

Mit dem neuen Öl-Hydrogel-Mix können Wirkstoffe kontinuierlich verabreicht werden: Die Hydrolyse baut die Tröpfchen mit immer derselben Geschwindigkeit ab und setzt so und die darin enthaltenen Wirkstoffe frei. Die Dosis lässt sich über die Konzentration des Wirkstoffs in den Tröpfchen einstellen. Die Dosierung ist dabei aber immer gleich, bis die Tröpfchen restlos abgebaut sind.

Einsatzfelder für die „aktiven Tröpfchen“ gibt es viele: Man könnte sie beispielsweise nutzen, um desinfizierende oder heilungsfördernde Auflagen zur Behandlung von schlecht heilenden Wunden herzustellen. Das Öl-Hydrogel-Material wurde bereits zum Patent angemeldet.

Weitere Informationen:

Die Forschung wurde gefördert durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Sonderforschungsbereichs Transregio 235, des Exzellenzclusters Origins sowie über das Institute for Advanced Study der Technischen Universität München mit Mitteln der Exzellenzinitiative und des 7. Europäische Rahmenprogramms.

Prof. Dr. Job Boekhoven

Technische Universität München

Professur für Supramolekulare Chemie

Lichtenbergstr. 4, 85748 Garching
Tel.: +49 89 289 54400
E-Mail: job.boekhoven@tum.de
Web: http://boekhovenlab.com/

Active droplets in a hydrogel release drugs with a constant and tunable rate;
Caren Wanzke, Marta Tena-Solsona, Benedikt Riess, Laura Tebcharani, Job Boekhoven;
Materials Horizons, 12.02.2020 – DOI: 10.1039/C9MH01822K
https://pubs.rsc.org/en/content/articlelanding/2020/mh/c9mh01822k

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/35918/ Link zur Presseinformation

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer