Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lagerung und Transport hochflüchtiger Gase: sicherer und ökonomischer durch „Kinetisches Einfangen“

09.10.2018

Augsburger Chemiker präsentieren eine neue Technologie zum Verdichten, Speichern und Transportieren hochflüchtiger Gase in porösen Gerüstverbindungen / Neue Perspektiven für automobilen Gasantrieb

Die Speicherung hochflüchtiger Gase ist nach wie vor eine große technologische Herausforderung – nicht zuletzt mit Blick auf mobile Anwendungen wie etwa methan- oder wasserstoffgetriebene Fahrzeuge. Bisher bekannte Speichermaterialen leiden unter zu geringer Bindungskraft und/oder Beladungskapazität.


Anordnung aus 15 Xenonatomen (blaue Kugeln) in einem Nanohohlraum von MFU-4, einer für die Gasspeicherung mittels „Kinetic Trapping“ entwickelten Verbindung des Augsburger Forscherteams.

@ Lst. f. Festkörperchemie/Universität Augsburg


Die Atome müssen in MFU-4 zwischen zwei Hohlräumen eine Aktivierungsbarriere (rote Kurve im Nebenbild) überwinden. Deren Höhe entscheidet, wie zuverlässig das Gas "eingefangen" wird.

@ Lst. f. Festkörperchemie/Universität Augsburg

Auch für die Beladbarkeit und die Wiederfreisetzung des Gases unter Normalbedingungen – also ohne hohen Temperatur- oder Druckaufwand – gibt es noch keine überzeugenden Lösungen. Über eine innovative Methode, mit der Gasmoleküle in nanoskopischen Hohlräumen einer porösen Verbindung zuverlässig "eingesperrt" werden können, berichten im Journal of the American Chemical Society (J. Am. Chem. Soc.) jetzt Forscherinnen und Forscher um Prof. Dr. Dirk Volkmer am Augsburger Lehrstuhl für Festkörperchemie.

Das von ihnen entwickelte Verfahren, das sich von herkömmlichen Gasadsorptionsmethoden grundsätzlich unterscheidet, bezeichnen sie als „Kinetic Trapping“ oder „Kinetisches Einfangen“. Das diesem Verfahren zugrundeliegende neue Trägermaterial MFU-4 zeichnet sich durch eine hohe Beladbarkeit bzw. Speicherkapazität aus.

Poröse Gasspeichermaterialien

„In den vergangenen Jahrzehnten wurden poröse Gasspeichermaterialien mit Blick auf möglichst starke Wechselwirkungen zwischen adsorbierten Gasmolekülen und dem Trägermaterial untersucht und entwickelt“, erläutert Volkmer. Dies habe zu einer Vielzahl neuartiger Gerüstverbindungen geführt, die flüchtige Gasmoleküle – etwa die Energieträger Wasserstoff oder Methan, aber auch toxische Gase wie Kohlenstoffmonoxid oder Schwefelwasserstoff – binden können.

Geringe Beladbarkeit unter Normalbedingungen aufgrund unzureichender Bindung

Die Beladbarkeit dieser Trägermaterialien, die sich u. a. in dem Gewichtsverhältnis zwischen Trägermaterial und adsorbiertem Gas wiederspiegelt, ist in der Regel allerdings nur sehr gering, v. a. dann, wenn die Adsorption unter Normalbedingungen, also bei Atmosphärendruck und Raumtemperatur erfolgt.

Denn die Gasmoleküle finden dann im Innern von herkömmlichen Gasspeichermaterialien nur wenige Orte, an denen sie hinreichend fest gebunden werden. Volkmer: „Damit ein Gasmolekül sich bei Normalbedingungen nicht gleich wieder von der Oberfläche des Trägermaterials ablöst, sind bindende Wechselwirkungen mit einer Energie im Bereich von ca. 30 Kilojoule pro Mol notwendig, in einem kJ/mol-Bereich also, der nur einer sehr schwachen chemischen Bindung entspricht.“

Herkömmliche Gasspeichermaterialien: für mobile Anwendungen nicht geeignet

Obwohl diese erforderlichen 30 kJ/mol gegenüber den Bindungsenergien einer "echten" chemischen Bindung – z. B. zwischen den Kohlenstoffatomen in einem organischen Molekül (350 kJ/mol) – gering erscheinen, liegen sie weit über jenen nur 10 kJ/mol, die sich zwischen kleinen, sehr flüchtigen Gasmolekülen und den bislang entwickelten porösen Speichermaterialien erreichen lassen.

„Dies reicht nicht aus, um Wasserstoff bei Raumtemperatur verdichten und zuverlässig an den Träger binden zu können. Dementsprechend eignen sich diese Speichermaterialien auch nicht für mobile Anwendungen, die extrem interessant wären, wenn wir etwa an wasserstoff- oder methanbetriebene Kraftfahrzeuge denken“, erläutert Volkmer.

Die etwa vom US Department of Energy formulierten Zielvorgaben für technisch anwendbare Wasserstoffspeichersysteme seien trotz zahlreicher internationaler Forschungsprogramme, die auf die Entwicklung hinreichend stabil beladbarer Trägermaterialien ausgerichtet waren, bislang nicht erreicht worden.

Problem: ungenügende Speicherkapazität trotz hoher Bindungsenergie

„Was eine hinreichende Bindungsenergie betrifft“, berichtet Volkmer, „schien uns selbst bereits vor vier Jahren ein Durchbruch gelungen zu sein, als wir in der Zeitschrift 'Angewandte Chemie' über die erfolgreiche Entwicklung eines Materials berichten konnten, das Wasserstoffmoleküle mit bis zu 32 kJ/mol bindet und damit einen Weltrekordwert für poröse Materialien erreicht hat." (Angew. Chem. Int. Ed. 2014, 53, 5832–5836; DOI: 10.1002/anie.201310004).

Allerdings verfügt dieses Material nur über eine viel zu geringe Beladungskapazität: Es bietet in seinen inneren Hohlräumen zu wenig Plätze, an denen die flüchtigen Wasserstoffmoleküle mit den genannten 32 kJ/mol und damit fest genug binden können. "Eine ärgerliche Tatsache", sagt Volkmer.

Völlig neues Trägermaterial

Um so mehr freut es ihn, dass er und sein Team nun nur vier Jahre später im "Journal of the American Chemical Society" über eine Gerüstverbindung berichten können, deren hohe Funktionalität in Sachen Bindung und Speicherkapazität unter Normalbedingungen sie auch bereits für ein flüchtiges und seltenes Gas – für Xenon nämlich – belegen konnten. Mit ihrer neuen porösen Trägerverbindung MFU-4 ist ihnen eine mehr als hundertfache Verdichtung von Xenongas gelungen, und diese Verdichtung bleibt nach erfolgter Beladung über viele Tage hinweg stabil bestehen.

Bei Raumtemperatur eine Dichte wie sonst nur bei –108 °C

“Wir konnten im Trägermaterial bei Raumtemperatur einen Xenon-Gewichtsanteil von bis zu 44,5 Prozent erreichen“, berichtet Dr. Hana Bunzen, die einen Großteil der experimentellen Gassorptionsstudien an Volkmers Lehrstuhl durchgeführt hat. Dies entspricht einer Dichte des eingeschlossenen Xenons von rund 1,8 g/cm3 und damit einem Wert, der demjenigen von verflüssigtem, also auf Temperaturen von unter –108 °C abgekühltem Xenon sehr nahe kommt.

Aneinanderreihung von "Nanogasflaschen"

Möglich gemacht wird diese hohe Verdichtung bei Raumtemperatur durch die einzigartige Struktur des Speichermaterials: Es besteht aus nanodimensionierten Hohlräumen, die über sehr enge Kanäle miteinander verbunden sind. Entscheidend für die hohe Bindungskapazität ist nun, dass der Durchmesser dieser Kanäle noch ein klein wenig enger ist als der Durchmesser der zu absorbierenden Gasmoleküle.

Es handelt sich also gleichsam um eine Aneinanderreihung miniaturisierter Gasflaschen, die über „Nanoventile“ miteinander verbunden sind. Volkmer: "In jedem einzelnen Hohlraum der Verbindung lassen sich zunächst zwar nur bis zu 15 Xenonatome speichern; durch Verkettung einer nahezu unendlich großen Zahl solch kleiner Hohlräume lässt sich dann aber eine in ihrer Höhe bislang nicht erreichte Gasspeicherdichte realisieren."

Hohe Temperaturen und Drücke nur für Be- und Entladung erforderlich

Um es den Gasmolekülen zu ermöglichen, sich durch die Nanoventile in die Hohlräume zu zwängen, muss ihnen zunächst bei der Beladung Aktivierungsenergie in Form hoher Temperaturen bzw. hoher Drücke zugeführt werden. Wenn sich seine Moleküle dann erst einmal durch Ventile gezwängt haben und in den Hohlräumen "gefangen" sind, kann das Gas dann aber ohne weiteren Energieaufwand in einem hochverdichteten Zustand zuverlässig und gefahrlos gelagert und transportiert werden – ohne die Nutzung unhandlicher und schwerer Gasbomben, wie sie bislang erforderlich und technisch üblich sind.

Wie Dr. German Sastre, ein an der Augsburger Studie mitwirkender Forscher aus Valencia, inzwischen anhand theoretischer Modellen bestätigt hat, wird die Zufuhr von Aktivierungsenergie auch für die gesteuerte Freisetzung der Gasatome wieder benötigt. Bleibt der teure Aufwand hoher Temperaturen und Drücke also auch beim "Kinetic Trapping" unverzichtbar?

"Der entscheidende Vorteil von MFU-4", so Volkmer, "besteht darin, dass – anders als bei anderen Gerüstverbindungen – die zum Entladen erforderliche Energie nicht dazu benötigt wird, die bindenden Wechselwirkungen zwischen den Gasmolekülen und dem porösen Träger aufzubrechen. Wie der Begriff Aktivierungsenergie bereits sagt, erschöpft sich ihre Funktion darin, den Gasatomen lediglich den Schwung zu geben, den sie brauchen, um sich durch die Nanoventile ins Material hinein- und dann wieder herauszuquetschen, nicht jedoch für die feste Bindung der hochverdichteten Gasmoleküle im Träger selbst."

Elektrische Felder anstelle hoher Temperaturen und Drücke

Hier nun eröffnen sich wiederum Perspektiven, die es möglich scheinen lassen, nicht nur bei der stabilen Lagerung des Gases im Material, sondern auch bei der Be- und Entladung auf den Aufwand hoher Temperatur- oder Druckbedingungen verzichten zu können. Bereits im vorigen Jahr nämlich konnten Volkmer und sein Team gemeinsam mit Kollegen vom Institute of Physical Chemistry and Electrochemistry der Leibniz Universität Hannover (Prof. Dr. Jürgen Caro) im Wissenschaftsmagazin "Science" zeigen, dass poröse Gerüstverbindungen in elektrischen Feldern ihre mechanischen Eigenschaften verändern (Science 2017, 358,347-351. DOI: 10.1126/science.aal2456). Das heißt, dass die beim "Kinetic Trapping" nur für die kontrollierte Be- und Entladung des Trägermaterials erforderliche Aktivierungsenergie u. U. auch durch elektrische Impulse erzeugt werden könnte.

Möglicherweise sogar für hochflüchtigen Wasserstoff geeignet

Nachdem das Funktionieren der neuen Speichertechnologie für Xenon bereits erfolgreich nachgewiesen werden konnte, ist Volkmer zuversichtlich, dass auch andere leicht flüchtige Gase sich durch "Kinetic Trapping" bei Raumtemperatur und maximaler Beladungsdichte zuverlässig und reversibel werden speichern und transportieren lassen.

Er denkt dabei z. B. an Methangas, dessen kinetischer Durchmesser mit 380 Pikometern nur geringfügig kleiner ist als der von Xenon (396 Pikometer); er denkt aber durchaus auch an Wasserstoff, der wegen seines noch wesentlich geringeren Moleküldurchmessers von nur 289 Pikometern und wegen seiner entsprechend noch geringeren Molekülmasse extrem flüchtig ist und als besonders schwer verdicht- und transportierbar gilt. Dass durch das "Kinetic Trapping" in der Form frei gestaltbare Wasserstofftanks gerade auch für die Automobilindustrie von großem Interesse sein könnten – dessen ist sich Volkmer sicher.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dirk Volkmer
Lehrstuhl für Festkörper- und Materialchemie
Universität Augsburg
D-86135 Augsburg
Telefon: +49(0)821-598-3032
dirk.volkmer@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/chemie/

Originalpublikation:

H. Bunzen, F. Kolbe, A. Kalytta-Mewes, G. Sastre, E. Brunner, and D. Volkmer, J. Achieving Large Volumetric Gas Storage Capacity in Metal–Organic Frameworks by Kinetic Trapping: A Case Study of Xenon Loading in MFU-4. Am. Chem. Soc. 2018, 140 (32), 10191–10197. DOI: 10.1021/jacs.8b04582

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diagnostik für alle
14.10.2019 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Inaktiver Rezeptor macht Krebs-Immuntherapien wirkungslos
14.10.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics