Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lärmende Kristalle

20.06.2017

Akustische Emission organischer Martensit-Analoga

Bestimmte organische Kristalle hüpfen herum, wenn sie erhitzt werden. Ursache ist ein extrem rascher Wechsel ihrer Kristallstruktur. Wissenschaftler zeigen in der Zeitschrift Angewandte Chemie, dass die Kristalle während dieses Vorgangs akustische Signale aussenden, die sich nutzen lassen, um die Charakteristika des Phänomens zu analysieren. So konnten sie belegen, dass es sich dabei um ein Analogon zu martensitischen Übergängen in Stahl und bestimmten Legierungen handelt.


Rasche Veränderung der Kristallstruktur führt zur Aussendung von akustischen Signalen.

(c) Wiley-VCH

Martensit, eine Stahlform, die beim Abschrecken von Austenit-Stahl entsteht, ist Namensgeber für diese Art Phasenumwandlung. Durch die rasche Abkühlung können sich die Atome nicht in die bei dieser Temperatur bevorzugte Struktur umsortieren, sie führen stattdessen eine gemeinsame Bewegung aus, bei der das Martensitgitter entsteht.

Auch bei den hüpfenden Kristallen wechselt offenbar eine große Zahl von Atomen konzertiert den Gitterplatz. Die hohe Geschwindigkeit des Phänomens und dass die Kristalle häufig explodieren, machte einen Beweis der Theorie, eine Aufklärung der Details – und damit eine Nutzung des sog. thermosalienten Effekts bisher unmöglich. Dabei könnte die Fähigkeit der Hüpf-Kristalle, Wärme sehr rasch in Bewegung oder Arbeit umzusetzen, möglicherweise für künstliche Muskeln oder Mikroroboterarme genutzt werden.

Ausgehend von der Vermutung, dass die plötzliche Freisetzung der angesammelten elastischen Spannung in Hüpf-Kristallen relativ starke akustische Wellen erzeugt, ähnlich wie seismische Wellen vor einem Erdbeben, rückte das Team von der New York University Abu Dhabi, dem Deutschen Elektronen Synchrotron (DESY) in Hamburg sowie dem Max-Planck-Institut für Festkörperforschung in Stuttgart dem Phänomen zu Leibe.

Als Forschungsobjekt wählten die Forscher um Panče Naumov die pflanzliche Aminosäure L-Pyroglutaminsäure (L-PGA). Diese Hüpf-Kristalle ändern ihre Kristallform beim Erhitzen zwischen etwa 65 und 67 °C, beim Abkühlen gehen sie zwischen 55,6 und 53,8 °C in die Ausgangsstruktur zurück, wie Röntgenkristallographie mit Synchrotronstrahlung belegte.

Wie vermutet, erzeugen die Kristalle während der Umwandlung deutliche akustische Signale, die mit einem piezoelektrischen Sensor registrierbar sind. Anzahl, Amplitude, Frequenz und Form gaben den Forschern Hinweise zu Dynamik und Mechanismen des Effekts. So waren die Stärke und Energie der ersten akustischen Welle deutlich höher, die Anstiegszeit kürzer als bei den folgenden.

Grund ist die effizientere Ausbreitung der elastischen Welle durch das defektfreie Medium zu Anfang des Phasenübergangs. Mit fortschreitender Umwandlung nimmt die Zahl der Mikrorisse zu. Dadurch wird elastische Spannungsenergie abgebaut.

Die Phasengrenze zwischen den Kristallformen schreitet in L-PGA mit 2,8 m/s voran, einige tausend Mal schneller als bei anderen Phasenübergängen. Dabei sind sich die beiden Kristallstrukturen ähnlicher als erwartet: Während der Umwandlung finden Expansionen in zwei Raumrichtungen und eine Kontraktion in der dritten statt, die aber alle im Bereich von nur 0,5 bis 1,7% liegen.

„Unsere Studie belegt, dass die Hüpf-Kristalle eine Materialklasse analog zu anorganischen Martensiten sind. Dis könnte von enormer Bedeutung für Anwendungen wie vollständig organische Elektronik sein“, so Naumov. „Akustische Emissionstechniken liefern endlich direkte Einblicke in diese raschen Übergänge.

Unsere Ergebnisse sprechen dafür, dass organische Materialien, die normalerweise als weich und zerbrechlich wahrgenommen werden, und härtere Stoffe, wie Metalle und Legierungen, zumindest auf der molekularen Ebene gar nicht so unterschiedlich sind. Die Erforschung organischer Festkörper könnte ein besseres Verständnis für die damit verbundenen makroskopischen Effekte eröffnen.“

Angewandte Chemie: Presseinfo 23/2017

Autor: Panče Naumov, New York University Abu Dhabi (United Arab Emirates), http://nyuad.nyu.edu/en/academics/faculty/pance-naumov.html

Link zum Originalbeitrag: https://doi.org/10.1002/ange.201702359

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Karin J. Schmitz | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Klima- und Höhensimulationsprüfstand für Motoren an der Hochschule Karlsruhe in Betrieb genommen

16.11.2018 | Maschinenbau

Rasende Elektronen unter Kontrolle

16.11.2018 | Physik Astronomie

Übergangsmetallkomplexe: Gemischt geht's besser

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics