Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kupferverbindung als Recheneinheit in Quantencomputern

11.12.2018

Chemiker der Universität Jena synthetisieren Molekül als mögliches Bauteil für Quantencomputer

Quantencomputer könnten die Fähigkeiten informationstechnischer Systeme enorm erweitern und somit die Welt verändern. Bis zum ersten tatsächlichen Gerät ist es allerdings noch ein weiter Weg, da vorhandene molekulare Konzepte bisher nicht in Technologien praktisch umgesetzt werden konnten.


Der Jenaer Doktorand Benjamin Kintzel betrachtet ein Laborgefäß mit Kristallen eines neuartigen Moleküls, das möglicherweise in einem Quantencomputer Verwendung finden kann.

Foto: Jan-Peter Kasper/FSU


Doktorand Benjamin Kintzel (l.) und Prof. Dr. Winfried Plass diskutieren über ein von ihnen entwickeltes Molekül, das möglicherweise in einem Quantencomputer Verwendung finden kann.

(Foto: Jan-Peter Kasper/FSU)

Forschende weltweit hält das nicht davon ab, neue Ideen für einzelne Bauteile zu entwerfen und zu optimieren. Chemiker der Friedrich-Schiller-Universität Jena haben jetzt ein Molekül synthetisiert, das die Funktion einer Recheneinheit in einem Quantencomputer übernehmen kann. Über ihre Arbeit berichten sie in der aktuellen Ausgabe des Forschungsmagazins „Chemical Communications“.

Molekül mit ausreichend langlebigem Spinzustand

„Um ein Molekül als Qubit – so nennt man die Recheneinheit eines Quantencomputers – einsetzen zu können, benötigt es einen ausreichend langlebigen Spinzustand, der von außen manipuliert werden kann“, erklärt Prof. Dr. Winfried Plass von der Universität Jena.

„Das bedeutet, der gerichtete Eigendrehimpuls der Elektronen des Moleküls, also der Spinzustand, muss so stabil sein, dass man Informationen eingeben und auslesen kann.“ Genau diese Bedingung erfüllt das von Plass und seinem Team hergestellte Molekül.

Es handelt sich dabei um eine sogenannte Koordinationsverbindung und enthält somit organische und metallische Bestandteile. „Das organische Material bildet hierbei ein Gerüst, in dem sich die Metallionen auf ganz bestimmte Weise anordnen“, beschreibt Benjamin Kintzel, der federführend an der Herstellung des Moleküls beteiligt war.

„In unserem Fall liegt ein dreikerniger Kupferkomplex vor. Das Besondere dabei: Die Kupferionen bilden innerhalb des Moleküls ein exakt gleichseitiges Dreieck.“ Nur so können die Elektronenspins der drei Kupferzentren so stark miteinander wechselwirken, dass das Molekül einen Spinzustand entwickelt, der es zu einem von außen addressierbaren Qubit macht.

„Auch wenn wir bereits wussten, wie unser Molekül theoretisch aussehen soll, so ist die Synthese doch eine ziemlich große Herausforderung“, sagt Kintzel. „Gerade die gleichseitige Dreiecksanordnung tatsächlich zu erreichen, gestaltet sich schwierig, da wir das Molekül kristallisieren müssen, um es genau charakterisieren zu können.

Und wie sich ein solches Teilchen im Kristall verhält, lässt sich nur schwer vorhersagen.“ Mit verschiedenen chemischen Werkzeugen und unterschiedlichen Feinabstimmungen während des Herstellungsprozesses ist es aber gelungen, das gewünschte Resultat hervorzubringen.

Informationen einschreiben durch elektrisches Feld

Das in Jena hergestellte Molekül bietet zudem laut theoretischen Vorhersagen einen weiteren elementaren Vorteil gegenüber anderen Qubits. „Der theoretische Bauplan unserer Kupferverbindung sieht vor, dass sich ihr Spinzustand mit elektrischen Feldern auf molekularer Ebene ansteuern lässt“, sagt Plass. „Bisher kommen hier vor allem magnetische Felder zum Einsatz, mit denen man allerdings nicht auf einzelne Moleküle fokussieren kann.“

Eine Forschergruppe im britischen Oxford, die mit den Jenaer Chemikern kooperiert, untersucht diese Eigenschaft des an der Friedrich-Schiller-Universität synthetisierten Moleküls derzeit durch verschiedene Experimente.

Das Chemikerteam der Universität Jena ist davon überzeugt, dass sein Molekül die Anforderungen erfüllt, um als Qubit eingesetzt zu werden. Ob es aber tatsächlich später als Recheneinheit Verwendung findet, lässt sich nur schwer vorhersagen. Denn wie Moleküle tatsächlich in Quantencomputer integriert werden können, dafür gibt es noch keine ultimative Lösung. Dafür ist auch Expertise im Bereich der Chemie gefragt – die Jenaer Experten jedenfalls sind vorbereitet.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Winfried Plass, Benjamin Kintzel
Institut für Anorganische und Analytische Chemie der Universität Jena
Humboldtstraße 8, 07743 Jena
Tel.: 03641 / 948130
E-Mail: sekr.plass[at]uni-jena.de

Originalpublikation:

Benjamin Kintzel et. al.: „Molecular electronic spin qubits from a spin-frustrated trinuclear copper complex, Chemical Communications 2018, DOI: 10.1039/c8cc06741d

Sebastian Hollstein | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen
29.05.2020 | Universität Heidelberg

nachricht Ein Hormon nach Pflanzenart
29.05.2020 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Ein Hormon nach Pflanzenart

29.05.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics