Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kupfer-Aluminium-Superatom

25.09.2018

Äußerlich sieht der Cluster aus 55 Kupfer- und Aluminiumatomen aus wie ein Kristall, chemisch hat er jedoch die Eigenschaften eines Atoms. Das hetero-metallische Superatom, das Chemikerinnen und Chemiker der Technischen Universität München (TUM) hergestellt haben, schafft die Voraussetzung für die Entwicklung neuer, kostengünstiger Katalysatoren.

Chemie kann teuer sein. Zum Reinigen von Abgasen beispielsweise benutzt man Platin. Das Edelmetall dient als Katalysator, der chemische Reaktionen beschleunigt. Ohne Katalysatoren wären viele Prozesse der chemischen Industrie nicht durchführbar.


43 Kupfer- und 12 Aluminiumatome bilden einen Cluster, der die Eigenschaften eines Atoms besitzt. Das heterometallische Superatom ist das größte, das je im Labor hergestellt wurde.

Christian Gemel / TUM

„Viele Forschungsgruppen experimentieren mit neuen Materialverbindungen aus kostengünstigeren, unedlen Metallen wie Eisen, Kupfer oder Aluminium. Doch bisher konnte niemand voraussagen, ob, wie und warum diese Katalysatoren reagieren“, erklärt Roland Fischer, Professor für Anorganische und Metallorganische Chemie der TUM. „Unser Ziel war es, diese Lücke zu schließen und die Grundlage zum Verständnis einer neuen Generation von Katalysatoren zu schaffen.“

Bottom-up zur Erkenntnis

Zusammen mit seinem Team konnte der Chemiker jetzt ein Geheimnis der unedlen Metallverbindungen lüften. „Das Neue an unserem Ansatz war, dass wir nicht vorhandene Materialen untersucht, sondern – Bottom-up – Verbindungen aus einzelnen Kupfer- und Aluminiumatomen aufgebaut haben“, berichtet Fischer.

Zwei Metalle auf atomarer Ebene zu verbinden, verlangte einiges an Know-how und Fingerspitzengefühl: Unter einer schützenden Argon-Atmosphäre mischten das Team im Reagenzglas die Metallatome, die an organische Verbindungen gebunden waren und gaben dann ein Lösungsmittel zu.

„Wir haben natürlich gehofft, dass sich die Kupfer- und Aluminiumatome von den organischen Verbindungen trennen und zusammen einen Cluster bilden. Aber ob sie das wirklich tun und was dabei herauskommt, war völlig unklar“, erinnert sich Fischer.

Das Geheimnis der Kristalle

Die Freude der Chemiker war daher groß, als sich am Boden des Reagenzglases rotschwarze Körnchen mit bis zu einem Millimeter Durchmesser bildeten. Röntgenaufnahmen brachten eine äußerst komplexe Struktur zum Vorschein: Jeweils 55 Kupfer- und Aluminiumatome sind so angeordnet, dass sie einen Kristall bilden, dessen Oberfläche aus 20 gleichseitigen Dreiecken besteht.

Die Kristallographie nennt einen solchen Körper Ikosaeder. Weitere Untersuchungen zeigten, dass die Kristalle chemisch wie ein einzelnes Kupfer-Atom reagieren und außerdem paramagnetisch sind, das heißt, sie werden durch ein starkes Magnetfeld angezogen.

Eine Erklärung für diese außergewöhnlichen Eigenschaften der Metallcluster lieferte Prof. Jean-Yves Saillard von der französischen Universität in Rennes: 43 Kupfer- und 12 Aluminiumatome bilden demnach ein „Superatom“, in dem die Metalle eine gemeinsame Elektronenhülle aufbauen, die der eines einzelnen Metallatoms gleicht.

Der Cluster hat daher die chemischen Eigenschaften eines Atoms. Auf der äußersten Schale befinden sich drei Valenzelektronen, deren Spins sich in einem Magnetfeld ausrichten – daher der beobachtete Paramagnetismus.

Wissensbasis für neue Katalysatoren

Das hetero-metallische Superatom des Münchner Forschungsteams, ist das größte, das je im Labor hergestellt wurde. „Dass es sich spontan, das heißt ohne Zufuhr von Energie, aus einer Lösung heraus bildet, ist ein äußerst bemerkenswertes Ergebnis“, betont Fischer. „Es zeigt, dass die Anordnung von 55 Atomen eine Insel der Stabilität darstellt und damit die Richtung vorgibt, in die die chemische Reaktion abläuft.“

Die Ergebnisse des Forschungsprojekts will der Wissenschaftler jetzt nutzen, um feinkörnige und damit hochwirksame Katalysatormaterialien zu entwickeln. „Von einer Anwendung sind wir zwar noch weit entfernt“, betont Fischer. „Aber auf der Basis des jetzt Erreichten, können wir die Eignung von Kupfer-Aluminium-Clustern für katalytische Prozesse prüfen und auch Cluster aus anderen erfolgversprechenden Metallen herstellen.“

Weitere Informationen:

Das Projekt wurde gefördert durch die Deutsche Forschungsgemeinschaft, die Alexander von Humboldt-Stiftung und den Fonds der Chemischen Industrie. Rechenzeit stellte das französische Supercomputing Center GENCI zur Verfügung.

Publikation:

Jana Weßing, Chelladurai Ganesamoorthy, Samia Kahlal, Rémi Marchal, Christian Gemel, Olivier Cador, Augusto C.H. Da Silva, Juarez L. F. Da Silva, Jean-Yves Saillard and Roland A. Fischer: The Mackay-type cluster [Cu₄₃Al₁₂](Cp*)₁₂: Open-shell 67electron superatom with emerging metal-like electronic structure; Angew. Chem. 07/2018. DOI: 10.1002/ange.201806039

Wissenschaftliche Ansprechpartner:

Prof. Dr. Roland Fischer
Technische Universität München
Lehrstuhl für Anorganische und Metallorganische Chemie
Tel.: +49 89 289 13080 – E-Mail: roland.fischer@tum.de

Originalpublikation:

https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.201806039

Weitere Informationen:

https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/detail/article/34960/ Presseinformation auf der TUM-Website
https://mediatum.ub.tum.de/1455514 Bildmaterial in druckfähiger Auflösung
http://www.amc.ch.tum.de Website des Lehrstuhls

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotika aus dem Meer
18.11.2019 | Friedrich-Schiller-Universität Jena

nachricht Auch parasitische Wespen machen Fettsäuren selbst
18.11.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: Veränderungen der Chiralität von Molekülen in Echtzeit beobachten

Chirale Moleküle – Verbindungen, die als Bild und Spiegelbild vorkommen – spielen eine wichtige Rolle in biologischen Prozessen und in der chemischen Synthese. Chemikern der ETH Zürich ist es nun erstmals gelungen, mit Hilfe von Ultrakurzzeit-Laserpulsen Änderungen der Chiralität während einer chemischen Reaktion in Echtzeit zu beobachten.

Manche Moleküle können in zwei spiegelbildlichen Formen existieren, ähnlich wie unsere Hände. Obwohl solche sogenannten Enantiomere fast identische...

Im Focus: Durchbruch in der Malariaforschung

Eine internationale Forschungsgruppe um den Zellbiologen Volker Heussler von der Universität Bern hat hunderte genetische Schwachstellen des Malaria-Parasiten Plasmodium identifiziert. Diese sind in der Medikamenten- und Impfstoffentwicklung dringend erforderlich, um die Krankheit dereinst ausrotten zu können.

Trotz grosser Anstrengungen in Medizin und Wissenschaft, sterben weltweit immer noch mehr als 400'000 Menschen an Malaria. Die Infektionskrankheit wird durch...

Im Focus: Bauplan eines bakteriellen Kraftwerks entschlüsselt

Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.

Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Antibiotika aus dem Meer

18.11.2019 | Biowissenschaften Chemie

Lebende Brücken: Mit alten indischen Bautechniken moderne Städte klimafreundlich gestalten

18.11.2019 | Architektur Bauwesen

„Moonwalk“ für die Wissenschaft zeigt Verzerrungen im räumlichen Gedächtnis

18.11.2019 | Studien Analysen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics