Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Metallenzyme oder die chemische Synthese von Morgen

17.11.2010
Forscher des Zentrums für Atomenergie und alternative Energien (CEA), der Universität Joseph Fourier und des Französischen Zentrums für wissenschaftliche Forschung (CNRS) [1] haben eine neue Möglichkeit für die Beobachtung der wichtigsten Etappen eines lebensnotwendigen Prozesses gefunden – die Sauerstoffaktivierung.

Diese neue Methode kombiniert die Protein-Kristallographie mit der biomimetischen Chemie. Zu diesem Zweck haben sie ein künstliches Metallenzym entwickelt, das sich aus einem chemischen Katalysator und einem Protein zusammensetzt. Anschließend haben sie dieses Enzym mit Hilfe der Röntgenkristallographie an der Europäischen Synchrotronstrahlungsquelle (ESRF) beobachtet.

Diese Ergebnisse ebnen den Weg für die Entwicklung von künstlichen Metallenzymen, die in der Lage sind, bei gleichzeitiger Kostensenkung Moleküle für die Industrie zu produzieren und neue Perspektiven für die grüne Chemie zu eröffnen. Die Ergebnisse wurden Online in der Zeitschrift Nature Chemistry veröffentlicht.

Viele chemische Moleküle können in zwei Formen vorkommen, die sich zueinander spiegelbildlich verhalten (Enantiomere). Meist ist nur eine der beiden Formen für die Gesundheits-, Agrar- oder Ernährungsindustrie von Interesse. Bei der chemischen Synthese werden aktuell jedoch noch beide Formen des Moleküls generiert (enantioselektive Katalyse). Zur Isolation der gewünschten Form bedarf es aufwendiger und kostspieliger Aufbereitungsprozesse.

In der Natur selbst existieren Enzyme, die die gewünschte Form direkt erzeugen können. So wurde die Idee geboren, diese Enzyme industriell zu nutzen. Das Problem ist jedoch, dass sie nur in geringer Menge in der Natur vorkommen. Die homogene chemische Katalyse [2] ermöglicht mehrere Reaktionen, aber oft mit einer geringen Stabilität der Katalysatoren und einer geringen Spezifizierung. So kamen die Forscher auf die Idee, Biologie und Chemie zu kombinieren, um künstliche Metallenzyme herzustellen.

Diese bestehen aus einem anorganischen Katalysator, der in eine inaktive Proteinstruktur eingebettet ist. Der anorganische Katalysator gibt die Art der Reaktion vor und bildet so das aktive Zentrum [3] des Enzyms. Die Proteinstruktur kontrolliert die Produktion der gewünschten Form des Produktes und die Wirksamkeit der Reaktion.

Auch wenn sich der grünen Chemie mit diesen künstlichen Metallenzymen umfangreiche neue Perspektiven eröffnen, so ist es noch ein weiter Weg bis zur industriellen Umsetzung. Zunächst gilt es, die perfekte Verbindung von Protein und Katalysator zu finden, ihre Funktionsweise zu verstehen und sie anzupassen. Mit ihrer Forschungsarbeit haben die Wissenschaftler der CEA und des CNRS eine wichtige Etappe bei der Entwicklung von Metallenzymen überschritten. Ihre Methode ermöglicht die Beobachtung der chemischen Reaktion im Aktiven Zentrum.

"Im beschriebenen Fall haben wir den Verlauf der Reaktion beobachtet, bei der der molekulare Sauerstoff aktiviert wird. Diese Reaktion ist bei zahlreichen lebensnotwendigen zellulären Prozessen zu beobachten", so Stéphane Ménage, Forscher des CNRS im Forscherteam für bioinspirierte Redoxchemie des Forschungsinstituts für Biotechnologien und -wissenschaften (iRTSV)

Für die Studie haben die Forscher diese Reaktion nachgeahmt, indem sie einen aromatischen Zyklus in einen Eisenkomplex einbrachten und diesen Komplex anschließend in ein Protein pflanzten [4], dessen einzige Funktion der Transport von Nickel bei der Escherichia coli Bakterie [5] ist. Sie stört demzufolge nicht die chemische Reaktion der Sauerstoffaktivierung. Die Forscher haben im Anschluss dieses künstliche Metallenzym kristallisiert und die Entwicklung der Reaktion innerhalb des Kristalls mit Röttgenkristallographie beobachtet. Dieser Kristall ermöglicht die Diffusion der Substrate und der Reaktionszwischenprodukte. Das Enzym bleibt im Kristall aktiv, die Reaktion findet statt und die verschiedenen Stufen können direkt im Kristall beobachtet werden. So ist es auch möglich, das Einbringen der Sauerstoffatome in den aromatischen Zellkern zu verfolgen. Die gesamte Reaktionskette wird mit dieser chemisch-biologischen Methode sichtbar.

[1]: Labor für Protein-Kristallographie und -Kristallogenese, Institut für Strukturbiologie J.P. Ebel (CEA/CNRS/Université Joseph Fourier) - Labor für Chemie und Biologie der Metalle (Universität Joseph Fourier/CEA/CNRS), Forschungsinstitut für Biotechnologien und -wissenschaften (iRSTV).

[2] Von einer homogenen Katalyse wird gesprochen, wenn bei einer chemischen Reaktion der Katalysator und die Edukte (Reaktanten) in derselben Phase vorliegen.

[3] Als Aktives Zentrum (engl. active site) bezeichnet man in der Chemie diejenigen Stellen eines Katalysators, an denen die katalysierte Reaktion stattfindet.

[4] Es handelt sich hierbei um das Nika-Protein.

[5] Escherichia Coli ist ein Darmbakterium, das bei Säugetieren vorkommt (sehr verbreitet beim Menschen).

Quelle: "Les métalloenzymes artificielles, ou la chimie de synthèse de demain", Pressemitteilung des CNRS – 11.10.2010, http://www2.cnrs.fr/presse/communique/1993.htm

Redakteur: Etienne Balli, etienne.balli@diplomatie.gouv.fr

| Wissenschaft-Frankreich
Weitere Informationen:
http://www.wissenschaft-frankreich.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Infrarotsensor als neue Methode für die Wirkstoffentwicklung
19.07.2018 | Ruhr-Universität Bochum

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics