Ein Medikament mit drei Wirkstoffen, die nacheinander zu festgelegten Zeitpunkten abgegeben werden – bislang nur eine Zukunftsvision, der ein Team der Technischen Universität München (TUM) jetzt aber ein gutes Stück nähergekommen ist. Durch eine Kombination aus Hydrogelen und künstlicher DNA lassen sich Nanopartikel unter körperähnlichen Bedingungen kontrolliert nacheinander freisetzen.
Immer mehr Menschen werden mit mehreren verschiedenen Medikamenten behandelt. Oftmals müssen sie die Mittel in festen Zeitabständen anwenden, was den Alltag kompliziert macht und die Gefahr in sich birgt, dass einzelne davon vergessen werden.
Oliver Lieleg, Professor für Biomechanik und Mitglied der Munich School of BioEngineering an der TUM, und Doktorandin Ceren Kimna haben nun ein Verfahren entwickelt, das Grundlage von Präparaten werden könnte, die verschiedene Wirkstoffe enthalten und diese im Körper absolut zuverlässig in einer vorgegebenen Reihenfolge und zu festgelegten Zeitpunkten abgeben.
„So könnte zum Beispiel eine Salbe, die auf eine Operationswunde aufgetragen wird, Schmerzmittel, Entzündungshemmer und abschwellend wirkende Mittel nacheinander freisetzen“, erklärt Oliver Lieleg.
Ein Wirkstoff nach dem anderen
„Salben oder Cremes, die ihre Wirkstoffe verzögert abgeben, sind nicht an sich neu“, ergänzt Oliver Lieleg. In heute verwendeten Präparaten könne allerdings nicht garantiert werden, dass nicht zeitweise mehrere Wirkstoffe gleichzeitig in den Organismus gelangen.
Um das Prinzip hinter ihrer Idee zu testen, verwendeten Oliver Lieleg und Ceren Kimna nanometergroße Partikel aus Silber, Eisenoxid und Gold, die in einem Hydrogel – einer speziellen geleeartigen Substanz – eingebettet waren. Mit einem spektroskopischen Verfahren verfolgten sie den Austritt der Partikel aus dem Gel. Die Partikel waren dabei so gewählt, dass sie sich in dem Gel ähnlich bewegen wie echte Wirkstoffträger, aber deutlich einfacher und günstiger herzustellen sind.
Die besondere Zutat, die die Nanopartikel steuert, ist künstliche DNA. DNA ist in der Natur zunächst Träger der Erbinformation. Forschende nutzen aber zunehmend die Tatsache, dass sich sehr genau bestimmen lässt, wie und wie stark sich DNA-Stücke miteinander verbinden, um daraus beispielsweise nanometergroße Maschinen zu bauen.
Die DNA-Kaskade: Zuerst zusammenhalten und im richtigen Augenblick loslassen
Die Silberpartikel sollten als erste abgegeben werden. Im Ausgangzustand verbinden spezielle von Lieleg und Kimna am Computer entworfene DNA-Stücke die Partikel miteinander. Der so entstandene Teilchen-Cluster ist so groß, dass er sich in dem Hydrogel nicht bewegen kann. Wird aber Kochsalzlösung hinzugefügt, lösen sich die Partikel von der DNA, werden beweglich und wandern zur Geloberfläche.
„Da die Kochsalzlösung ungefähr denselben Salzgehalt hat wie der menschliche Körper, konnten wir so simulieren, dass die Wirkstoffe erst bei Anwendung des Präparats frei werden“, erläutert Ceren Kimna.
Das DNA-Geflecht, in dem die Eisenoxidpartikel eingebunden sind, wird durch zwei Arten von DNA gebildet: Stücke der DNA der einen Art sind mit einem Ende an den Eisenoxidpartikeln angeheftet, die andere DNA verbindet deren lose Enden. Diese Verbünde werden durch die Kochsalzlösung nicht beeinträchtigt.
Die Eisenoxid-Partikel können nur freigesetzt werden, nachdem das erste Cluster sich aufgelöst hat. Dabei werden nämlich nicht nur Silber-Nanopartikel frei, sondern auch DNA. Diese verdrängt die „Verbindungs-DNA“ des zweiten Clusters, bildet aber selbst keine Verbindungen, so dass sich die Eisenoxidpartikel voneinander trennen. Auch hier werden DNA-Stücke frei, die wiederum zum „Schlüssel“ für die dritte DNA-Nanopartikel-Verbindung werden.
„Salben sind durch ihre Konsistenz für unseren Hydrogel-basierten Ansatz die naheliegendste Anwendung. Das Prinzip könnte in Zukunft aber auch in Tabletten zum Einsatz kommen die im Körper mehrere Wirkstoffe nacheinander abgeben,“ erklärt Lieleg.
Mehr Informationen:
Prof. Lieleg forscht an der Munich School of BioEngineering (MSB). Dieses interdisziplinäre Forschungszentrum der TUM ist europaweit die thematisch umfassendste universitäre Einrichtung für das Schnittfeld von Medizin, Ingenieur- und Naturwissenschaften.
https://www.mw.tum.de/bme Professur für Biomechanik
https://www.bioengineering.tum.de Munich School of Bioengineering (engl.)
Hochauflösende Bilder für die redaktionelle Berichterstattung:
https://mediatum.ub.tum.de/1507414
Prof. Dr. Oliver Lieleg
Technische Universität München
Professur für Biomechanik
Munich School of BioEngineering
oliver.lieleg@tum.de
Tel: +49 89 289 10952
Ceren Kimna, Oliver Lieleg, Engineering an orchestrated release avalanche from hydrogels using DNA-nanotechnology, Journal of Controlled Release, Volume 304, 28 June 2019, Pages 19-28, DOI: 10.1016/j.jconrel.2019.04.028
Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de
Weitere Berichte zu: > Biomechanik > DNA-Stücke > Eisenoxid-Partikel > Gel > Hydrogel > Ingenieur- und Naturwissenschaften > Kochsalzlösung > Silber-Nanopartikel > TUM > Wirkstoffe > Wirkstoffträger > dna > menschliche Körper
Titin in Echtzeit verfolgen
13.12.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft
Neu entdeckter Schalter steuert Zellteilung bei Bakterien
13.12.2019 | Philipps-Universität Marburg
Eine neue Karte zeigt die unter dem Eis verborgenen Geländeformen so genau wie nie zuvor. Das erlaubt bessere Prognosen über die Zukunft der Gletscher und den Anstieg des Meeresspiegels
Wenn der Klimawandel die Gletscher der Antarktis immer rascher Richtung Meer fließen lässt, ist das keine gute Nachricht. Denn dadurch verlieren die gefrorenen...
Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene.
Damit Viren sich vermehren können, benötigen sie in der Regel die Unterstützung der von ihnen befallenen Zellen. Nur in deren Zellkern finden sie die...
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies. Two studies now provide fascinating insights into their unusual propagation strategy at the atomic level.
For viruses to multiply, they usually need the support of the cells they infect. In many cases, only in their host’s nucleus can they find the machines,...
More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?
It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...
In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.
Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...
Anzeige
Anzeige
Analyse internationaler Finanzmärkte
10.12.2019 | Veranstaltungen
QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien
04.12.2019 | Veranstaltungen
03.12.2019 | Veranstaltungen
13.12.2019 | Biowissenschaften Chemie
LogiMAT 2020: Automatisierungslösungen für die Logistik
13.12.2019 | Messenachrichten
Das feine Gesicht der Antarktis
13.12.2019 | Geowissenschaften