Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Biofilme für ressourcenschonende Biotechnologie

09.02.2016

Im neuen bayerischen Projektverbund BayBiotech kooperieren Bioprozesstechnik und Makromolekulare Chemie an der Universität Bayreuth, um ein innovatives Konzept für künstliche Biofilme zu entwickeln. Deren Potenziale sollen in unterschiedlichen Bereichen der Industrie systematisch genutzt werden können – zum Beispiel in der Energietechnik, der Umwelttechnik oder der Pharmazie.

Welche Chancen bietet die Biotechnologie für eine innovative, in wirtschaftlicher Hinsicht effiziente und zugleich umweltfreundliche Nutzung von Rohstoffen? Um diese Frage geht es in dem neuen Projektverbund Ressourcenschonende Biotechnologie (BayBiotech), der vom Bayerischen Staatsministerium für Umwelt und Verbraucherschutz mit insgesamt rund zwei Mio. Euro gefördert wird.


Dreidimensionale Aufnahme einer Mikrofaser mit Shewanella oneidensis-Bakterien. Grün: lebende Bakterien, rot: tote Bakterien.

Bild: Patrick Kaiser; mit Autorangabe zur Veröffentlichung frei.

An der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), die den Verbund koordiniert, fand am 3. Februar 2016 die Auftaktveranstaltung statt. Dabei stellten sich sechs anwendungsorientierte Forschungsprojekte vor, die künftig an BayBiotech mitwirken. Dazu zählt auch ein Vorhaben der Universität Bayreuth zum Thema „Biofilme für die Prozessintensivierung“, in dem Forschungsteams aus der Bioprozesstechnik und der Makromolekularen Chemie unter der Leitung von Prof. Dr. Ruth Freitag und Prof. Dr. Andreas Greiner kooperieren.

Von der Natur zur industriellen Nutzung

Das Projekt zielt darauf ab, ein neues Konzept für künstliche Biofilme zu entwickeln und im Industriemaßstab umzusetzen. In der Natur gibt es vielfältige Beispiele für Biofilme. Sie entstehen überall dort, wo sich Bakterien, Pilze oder Algen an feuchte Oberflächen anheften und sich hier aufgrund günstiger Lebensbedingungen vermehren, wie etwa an Brückenpfeilern, Rohrleitungen oder Schiffsturbinen.

In manchen Bereichen der Industrie werden bereits heute großflächige Biofilme eingesetzt. Biofilme kommen insbesondere bei der Abwasserbehandlung, in Bio-Filtern für die Luftreinhaltung, in Biogasanlagen oder auch bei der Produktion von Essigsäure zum Einsatz, die für die Lebensmittel- und für die Kunststoffindustrie ein unentbehrlicher Rohstoff ist.

In diesen Fällen arbeitet man mit natürlichen Biofilmen, die meist mehrere Arten von Mikroorganismen enthalten. Für viele weitere Anwendungen in der industriellen Biotechnologie gibt es jedoch keine geeigneten natürlichen Biofilme, oder sie sind aus hygienischen Gründen nicht erwünscht. Hier setzt das neue Bayreuther Konzept der „Biokomposite“ an: Dies sind Biofilme, bei denen die Mikroorganismen nicht nur gezielt ausgewählt, sondern auch in ein maßgeschneidertes Substrat aus Polymeren eingebettet werden.

Vielfältige Anwendungspotenziale maßgeschneiderter Biofilme

Die an BayBiotech beteiligten Forscher an der Universität Bayreuth sind überzeugt, dass das Potenzial derartiger künstlicher Biofilme groß ist. Dies gilt vor allem für „Single Species“-Biofilme, die ausschließlich eine einzige Art von Mikroorganismen enthalten, so dass sich deren Stoffwechselfunktionen gezielt steuern und kontrollieren lassen.

„Für einen sparsamen Umgang mit Rohstoffen wird es immer wichtiger, dass die in Abfällen enthaltenen Wertstoffe erneut genutzt werden“, erklärt Prof. Freitag, Inhaberin der Lehrstuhls für Bioprozesstechnik. „Dies gilt für Abfälle aus der Industrie und der Landwirtschaft ebenso wie für den Müll von Privathaushalten. Phosphat, Schwefel und Metalle sind Rohstoffe, die viel zu wertvoll sind, um verbrannt zu werden. Mithilfe spezieller Mikroorganismen können sie isoliert und zurückgewonnen werden.“

Ein weiteres zukunftsweisendes Anwendungsgebiet ist die Energietechnik. So können Mikroorganismen in Brennstoffzellen zur Stromerzeugung genutzt werden. Als Katalysatoren können sie hier Elektronen freisetzen, die – wenn sie direkt auf die Anode der Brennstoffzelle geleitet werden – einen Stromkreislauf in Gang setzen. Nicht zuletzt sind Biofilme auch für die Chemieindustrie zunehmend interessant, beispielsweise wenn es um strukturspezifische Synthesen, natürliche Schädlingsbekämpfung und -schadstoffabreicherung oder die Förderung des Pflanzenwachstums geht.

Bis heute fehlt der Industrie jedoch ein universell einsetzbares Konzept für die Produktion von „Single Species“-Biofilmen, die passgenau auf bestimmte biotechnologische Funktionen hin zugeschnitten sind. Das Bayreuther Forschungsprojekt unter dem Dach von BayBiotech will in den nächsten Jahren wichtige Eckpunkte eines solchen Konzepts erarbeiten. Auf diese Weise sollen industrielle biotechnologische Prozesse intensiviert und die Potenziale von Biofilmen in unterschiedlichen Branchen systematisch genutzt werden können.

Biokomposite – eine vielversprechende Materialklasse für die Biotechnologie

Von zentraler Bedeutung für dieses Vorhaben ist die interdisziplinäre Zusammenarbeit von Bioprozesstechnik und Makromolekularer Chemie auf dem Bayreuther Campus. Unter der Leitung von Prof. Greiner, der an der Universität Bayreuth einen Lehrstuhl für Makromolekulare Chemie innehat, sollen neue Biokomposite entwickelt werden. Hierbei handelt es sich um eine neuartige Materialklasse, bei der Bakterien oder andere Mikroorganismen gezielt in einer Polymer-Matrix platziert werden. Diese Verbundmaterialien haben, wenn sie als Biofilme eingesetzt werden, zahlreiche Vorteile. Die Mikroorganismen sind innerhalb der Matrix an ausgewählten Punkten fixiert und können sich nicht frei bewegen, so dass sich das Zusammenspiel ihrer Stoffwechselprozesse und somit auch die Funktionen der Materialien präzise kontrollieren lassen.

„Wir verfügen an der Universität Bayreuth über modernste Technologien, die für das Design und die Produktion von Biokompositen im Labor erforderlich sind“, erklärt Prof. Greiner. „So haben wir zum Beispiel Anlagen für das Elektro- und das Nass-Spinnen, mit denen sich feinstrukturierte Vliese und Gewebe aus Polymeren herstellen lassen. Dies sind Trägermaterialien, deren hochinteressante Eigenschaften auf dem Gebiet der Biofilme bisher noch viel zu wenig genutzt worden sind.“

BayBiotech – ein Beitrag zum „Mega-Projekt Rohstoffwende Bayern“

Anlässlich der Auftaktveranstaltung in Erlangen betonte die Bayerische Umweltministerin Ulrike Scharf die Bedeutung des neuen Projektverbunds für einen schonenden Umgang mit Ressourcen: "Es ist für die Zukunft unseres Landes von enormer Bedeutung, dass wir mit unseren endlichen Ressourcen sparsam und intelligent umgehen. Deshalb brauchen wir die Rohstoffwende – aus ökonomischen und ökologischen Gründen. Mit dem neuen Projektverbund erschließen wir innovative Möglichkeiten der Biotechnologie, um Ressourcen zu schonen. BayBiotech ist neben dem Projektverbund ForCycle ein weiterer starker Baustein im Handlungsfeld Forschung und Entwicklung unseres Mega-Projekts Rohstoffwende Bayern."

Kontakte:

Prof. Dr. Ruth Freitag
Lehrstuhl für Bioprozesstechnik
Fakultät für Ingenieurwissenschaften
Universität Bayreuth
95447 Bayreuth
Tel.: +49 (0)921 55-7371
E-Mail: ruth.freitag@uni-bayreuth.de

Prof. Dr. Andreas Greiner
Lehrstuhl für Makromolekulare Chemie II
Universität Bayreuth
D-95448 Bayreuth
Telefon: +49 (0)921 55 3399
E-Mail: andreas.greiner@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics