Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kristalline Verbeugung

20.05.2016

Makroskopische Selbstoszillation: Kristall beugt und streckt sich unter blauem Licht

Mikroroboter und Nanomaschinen sind keine reine Utopie mehr. Eine der größten Herausforderungen ist jedoch noch immer, die Bewegung einzelner Moleküle oder Molekülverbände in eine strukturierte makroskopische Bewegung zu übertragen, die sich so lange kontinuierlich wiederholt, wie das System mit Energie versorgt wird.


Makroskopische Selbstoszillation

(c) Wiley-VCH

Japanische Wissenschaftler stellen in der Zeitschrift Angewandte Chemie jetzt ein solches selbstoszillatorisches System vor: einen plättchenförmigen Kristall, der sich abwechselnd beugt und wieder streckt– im stetigen Wechsel, solange er in Wasser mit blauem Licht bestrahlt wird.

Bei den Plättchen, die das Team um Sadamu Takeda und Yoshiyuki Kageyama von der Hokkaido University (Sapporo) enwickelt hat, handelt es sich um Mischkristalle aus Ölsäure und einer Azobenzol-Verbindung in einem speziellen Mischungsverhältnis.

Entscheidend sind die zwei über eine Azobrücke verbundenen Phenylringe der Azobenzol-Verbindung. Sie können entweder trans oder cis angeordnet sein, d.h. auf entgegengesetzten Seiten einer gedachten Ebene entlang der Azo-Brücke liegen oder auf derselben Seite. Im flachen Kristall liegen 99,8 % der Moleküle als trans-Isomer vor.

Blaues Licht regt die Moleküle an, die Azo-Brücken „lockern“ sich und es kann bei einigen Molekülen zu einer Umordnung (Isomerisierung) in die cis-Konfiguration kommen. Dies verändert ihre Form, stört die Kristallstruktur und erzeugt eine Spannung. Ab einem bestimmten Prozentsatz an cis-Isomeren wird die Spannung so groß, dass sich die Morphologie ändert: Das Plättchen beugt sich.

Wird weiter bestrahlt, klappt das Plättchen irgendwann wieder in den flachen Zustand zurück. Weshalb? Auch cis-Isomere werden durch das blaue Licht angeregt und können ihre Struktur ändern – in die trans-Form. Warum dabei die Population der cis-Isomere wieder abnimmt, ist noch nicht abschließend geklärt. Entweder kann das Molekül in der cis-Form die Lichtenergie besser „einfangen“.

Oder die veränderte molekulare Anordnung in der neuen Kristallphase verändert die Lichtabsorption der Moleküle gegenüber dem „normalen“ Kristall. Unterschreitet der Anteil an cis-Isomeren wieder den Grenzwert, kann die ursprüngliche Kristallstruktur wieder eingenommen werden, das Plättchen klappt zurück in die gestreckte Geometrie. Dann startet der Zyklus von Neuem.

Während das Ausmaß der Krümmung von den Dimensionen des individuellen Kristalls abhängt, hat die Lichtstärke einen Einfluss auf die Klappgeschwindigkeit: Je stärker bestrahlt wird, desto schneller erfolgt der Formwechsel.

Diese Umwandlung von Lichtenergie in eine mechanische Bewegung könnte für das Design von Materialien interessant sein, die die Bewegung von Tieren, zellulären Bestandteilen oder dynamischen technischen Bauteilen nachahmen, etwa in Mikromaschinen.

Angewandte Chemie: Presseinfo 14/2016

Autor: Yoshiyuki Kageyama, Hokkaido University (Japan), http://www.sci.hokudai.ac.jp/~y.kageyama/public/

Link zum Originalbeitrag: http://dx.doi.org/10.1002/ange.201600218

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

https://presse.angewandte.de

Dr. Renate Hoer | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics