Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jedem Krebspatienten seine individuelle Therapie

27.08.2008
Marburger Mediziner haben eine neue Klinische Forschergruppe etabliert, um Gene zu untersuchen, die Tumorzellen resistent gegenüber Krebsmedikamenten machen.

Die Deutsche Forschungsgemeinschaft (DFG) fördert sieben Teilprojekte mit 2,3 Millionen Euro für die kommenden drei Jahre, die Universität steuert dieselbe Summe bei.

In naher Zukunft wird Krebs vermutlich die Herz-Kreislauf-Erkrankungen als Todesursache Nummer eins ablösen, wie es sich aktuell bereits in den Vereinigten Staaten und in China abzeichnet. "Eines der größten Probleme bei Krebs sind Resistenzen gegenüber Chemotherapeutika", erläutert Professor Dr. Andreas Neubauer, der Sprecher der Forschergruppe KFO 210 "Genetics of drug resistance in cancer".

Die beteiligten Wissenschaftler von den Universitäten Marburg und Würzburg wollen nun herausfinden, welche molekularen Signalwege dafür verantwortlich sind, dass Tumorzellen nicht auf Krebsmedikamente ansprechen. Dazu schalten die Forscher einzelne Gene aus, um Rückschlüsse auf deren Funktion ziehen zu können. In Hochdurchsatz-Experimenten können Tausende von Genen pro Durchgang getestet werden, indem man jeweils ein Gen pro Zelle inaktiviert. Die technologische Grundlage für diese Vorgehensweise liefern moderne RNAi-Screening-Verfahren, die Professor Dr. Martin Eilers mit seiner Würzburger Arbeitsgruppe weiterentwickelt, damit die Marburger Kollegen ihre Forschungen mit den neuartigen Instrumenten vorantreiben können.

Die Teilprojekte an der Philipps-Universität unterscheiden sich voneinander hinsichtlich der untersuchten Krebsarten sowie der Signalwege, die erforscht werden sollen. "Wir träumen davon, dass jeder Patient seine individuell zugeschnittene Therapie bekommt", fasst Neubauer das Fernziel der Forschergruppe zusammen.

Die Universitätsleitung begrüßte die Einrichtung der neuen Forschergruppe. "Die Förderung durch die DFG belegt, welch hohen Stellenwert die Marburger Krebsforschung im nationalen Vergleich hat", sagte Dr. Friedhelm Nonne, der Kanzler der Philipps-Universität. "Deshalb unterstützt die Universität das Vorhaben auch finanziell." Auch Professor Dr. Werner Seeger, der ärztliche Geschäftsführer des Universitätsklinikums Gießen und Marburg zeigte sich erfreut über die Anerkennung der Marburger Universitätsmedizin durch die DFG: "Die bewilligten Projekte stärken das wissenschaftliche Profil unseres Klinikums. Die Förderzusage macht erneut deutlich, wie gut exzellente Forschung in einem privatisierten Umfeld gedeihen kann."

Die Vorhaben im Einzelnen:

Das Team von Professor Dr. Andreas Neubauer beschäftigt sich mit der Wechselwirkung zwischen einem bekannten Krebsgen und dem Wirkstoff Cytarabin. "Das Projekt geht von klinischen Beobachtungen aus, die ich vor 20 Jahren als junger Wissenschaftler gemacht habe", erläutert der Onkologe: Leukämie-Patienten, die eine krebsfördernde Mutation im so genannten Ras-Gen tragen, sprechen überdurchschnittlich gut auf das hochdosierte Medikament Cytarabin an. In aktuellen Untersuchungen konnte Neubauer diesen Befund auch in Zellkultur bestätigen. Die DFG-Förderung ermöglicht es nun, nach weiteren Zielgenen im Ras-Signalweg zu fahnden, die anschließend molekular charakterisiert und in Zellkultur getestet werden sollen.

Dr. Andreas Burchert sucht nach Genen, die dafür verantwortlich sind, dass Tumorzellen eine Behandlung mit dem Wirkstoff Cisplatin oder Imatinib überdauern. Als Modell hierfür dienen das Lungenkarzinom und die chronische myeloische Leukämie. Burchert ist zugleich Leiter der Forschergruppe.

Die Bedeutung des Proteins WNT5A für das Überleben von Tumorzellen ist das Thema von Dr. Patrick Michl. Er möchte am Beispiel von Bauchspeicheldrüsen-Krebs die Rolle von Molekülen aufklären, die das WNT5A-Signal weiterleiten oder modifizieren.

Dr. Volker Ellenrieder widmet sich in seiner Forschungsarbeit ebenfalls dem Bauchspeicheldrüsen-Krebs. Das Teilprojekt gilt der Frage, wie der Transkriptionsfaktor NFAT zur Chemoresistenz beiträgt, indem er mit dem Ras-Signalweg interagiert.

Die Arbeitsgruppe von Professor Dr. Thomas Stiewe befasst sich mit einem zellulären Reparatursystem, das Fehler bei der Vervielfältigung der Erbsubstanz DNA aufdeckt und korrigiert. Wenn das Reparatursystem nicht funktionsfähig ist, kommt es vermehrt zur Tumorbildung.

Die Voraussetzungen für die verschiedenen Vorhaben liefert das Plattform-Projekt von Professor Dr. Martin Eilers in Würzburg. Das Ziel seiner Arbeitsgruppe ist es, Fremd-DNA mittels Viren in Zellen einzuschleusen, so dass dort zelleigene Gene ausgeschaltet werden.

Dr. Cornelia Brendel wird in ihrem Teilprojekt aufwendige Zellsortierungs-Verfahren verwenden, um Zelltypen zu finden, die dafür verantwortlich sind, dass Patienten nicht auf Therapien ansprechen oder einen Rückfall erleiden.

Weitere Informationen:
Ansprechpartnerin zum Pressegespräch:
Dr. Sabine Eber,
Fachbereich Medizin
Tel.: 06421 58-66370
E-Mail: eber@med.uni-marburg.de
Ansprechpartner für Fragen zur Forschergruppe:
Professor Dr. Andreas Neubauer,
Klinik für Hämatologie, Onkologie und Immunologie
Tel.: 06421 58-66272
E-Mail: neubauer@staff.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de
http://www.imt.uni-marburg.de/kfo210

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics