Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebse produzieren Superkleber der Meere

02.08.2010
Forschungsprojekt zum Einsatz des Klebstoffs von Rankenfüßern für Medizin und Industrie

Ist ihr das Besetzen von Schiffen, Felsen oder Bojen zu langweilig, lässt sich die gestielte Meereichel, Dosima fascicularis, an selbstgebauten Flößen durch die Ozeane treiben. Der marine Krebs aus der Familie der Rankenfüßer verwendet klebrige Substanzen zur Haftung – die in synthetischer Form das Interesse von Medizin, Industrie und Technik wecken. Waltraud Klepal von der Fakultät für Lebenswissenschaften der Universität Wien untersucht in einem österreichisch-deutsch-irischen Forschungsprojekt Entstehung und Zusammensetzung des Klebstoffs dieser Meerestiere.

Rankenfüßer sind die Seefahrer unter den Meerestieren: Die Krebse setzen sich gerne auf Schiffsrümpfen fest und verlangsamen dadurch die Fahrtgeschwindigkeit. Spät wurde der mögliche Nutzen der Tiere entdeckt; der natürliche Superkleber, mit dem sich die Krebse an nahezu allen Flächen festheften können. Ursprünglich erkannt wurde er von der Zahnmedizin, vermutlich daher wird der Klebstoff auch "Zement" genannt. "Mittlerweile ist der Bereich möglicher Anwendungen und das Interesse der Industrie weiter gewachsen", erklärt Waltraud Klepal, Professorin der Core Facility für Cell Imaging und Ultrastrukturforschung an der Fakultät für Lebenswissenschaften der Universität Wien. Mit ihrem Team untersucht die Biologin im Rahmen des FWF-Projekts (Fonds zur Förderung der wissenschaftlichen Forschung) "Charakterisierung des Zements von Dosima fascicularis" die Entstehung und Zusammensetzung des Klebstoffs der gestielten Meereichel aus der Familie der Rankenfüßer.

Wasserfest

Um zu verstehen, wie diese Krebsart den Zement produziert, durchleuchtet Klepal die Tiere bis auf die kleinste Zelle: "Mit dem Elektronenmikroskop untersuchen wir die Zementdrüsen, das ausleitende Gangsystem und den Zement innerhalb und außerhalb der Zelle." Mit Semidünnschnitten von einem halben bis einem Mikrometer Dicke sowie Ultradünnschnitten von nur 60 bis 70 Nanometern erforscht das Team die Zementzelle im Detail. "Der weiche Zement erhärtet, sobald er nach außen gelangt – ähnlich einem Superkleber", erklärt Projektmitarbeiterin Vanessa Zheden. Nicht viele Klebstoffe sind bekannt, die im Wasser erhärten. Denn meist ist es problematisch, feuchte Oberflächen zu verkleben. Wodurch der Zement aushärtet, ist deshalb eine zentrale Frage des Projekts. "Handelt es sich um einen Zwei- oder Ein-Komponentenkleber, einen Reaktionsklebstoff – der eine chemische Reaktion zur Aushärtung benötigt –, eine Dispersion oder einen physikalisch abbindenden Klebstoff", erläutert Klepal die verschiedenen Möglichkeiten.

Mobile Krebse

Mit dem Sekret kann sich Dosima fascicularis aber nicht nur an Felsen, Schiffen oder Bojen – und somit an verschiedenen Oberflächenstrukturen – festheften. Sie hat im Laufe der Evolution gelernt, den Zement als Floß zu verwenden und sich damit im Wasser treiben zu lassen. "Das ist biologisch gesehen großartig", freut sich Klepal: "Die eigentlich festsitzenden Tiere, die sonst auf Wasser-bewegung angewiesen sind um sich ernähren und fortpflanzen zu können, werden auf diese Weise mobil." Möglich macht dies die Struktur des Zements, dessen Inneres mit kleinen Blasen gefüllt ist.

Aus der Natur in die Industrie

Sobald die Zusammensetzung des natürlichen Klebstoffs bekannt ist, kann er auf synthetischem Weg hergestellt werden. Neben der Zahnmedizin ist der Zement auch für die Allgemeinmedizin, die Chirurgie sowie die Tiermedizin interessant. "Der Klebstoff könnte bei der Heilung von Schnittwunden die Nähte oder bei Knochenbrüchen Nägel und Schrauben ersetzen", erklärt Klepal. Da der Klebstoff besonders widerstandsfähig, elastisch und komprimierbar ist, könnte er auch in Industrie und Technik – unter anderem für Unterwasserkonstruktionen – Anwendung finden.

Kooperation zwischen Österreich, Deutschland und Irland

Während sich die ForscherInnen in Wien um die Morphologie – Struktur und Form – der Tiere und deren Klebstoff kümmern, untersuchen die KooperationspartnerInnen am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung in Bremen den biochemischen Aufbau des Zements. Die Histochemie (Identifikation von chemischen Gruppen und Komponenten) wird an der National University of Ireland durchgeführt. Das Forschungsprojekt ist bis 2012 anberaumt.

Webseite Core Facility für Cell Imaging und Ultrastrukturforschung http://www.univie.ac.at/cius

Kontakt
Ao. Univ.-Prof. i.R. Dr. Waltraud Klepal
Core Facility für Cell Imaging und Ultrastrukturforschung
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-544 20
waltraud.klepal@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | idw
Weitere Informationen:
http://public.univie.ac.at
http://www.univie.ac.at
http://www.univie.ac.at/cius

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bei Depressionen ist Hirnregion zur Stresskontrolle vergrößert
20.09.2018 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Nanoreaktoren nach natürlichen Vorbildern gebaut
20.09.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gesundheitstipps und ein virtueller Tauchgang zu Korallenriffen

20.09.2018 | Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was Einstein noch nicht wusste

20.09.2018 | Physik Astronomie

One step ahead: Adaptive Radarsysteme für smarte Fahrerassistenz

20.09.2018 | Informationstechnologie

Nanoreaktoren nach natürlichen Vorbildern gebaut

20.09.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics