Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krebsbekämpfung: Struktur von wichtigem Transport-Protein entschlüsselt

21.06.2019

Berner Forschenden ist es gelungen, erstmals die Struktur eines Transport-Proteins zu entschlüsseln und damit den Funktionsmechanismus zu beschreiben, der für das Überleben von Krebszellen eine bedeutende Rolle spielt. Dies ist ein wichtiger Schritt, um wirksame Hemmstoffe zu entwickeln und das Tumorwachstum zu bekämpfen.

Damit gewisse Krebszellen überleben können, sind sie darauf angewiesen, das Stoffwechselprodukt Laktat, das bei ihrer Energiegewinnung entsteht, «abzutransportieren». Laktat oder Milchsäure spielt in vielen biochemischen und zellulären Prozessen eine wichtige Rolle.


Prof. Dr. Dimitrios Fotiadis (links) und Dr. Patrick Bosshart (rechts), Institut für Biochemie und Molekulare Medizin (IBMM), Universität Bern, und NFS TransCure.

Bild: David Kalbermatter

In gesunden Zellen entsteht es, wenn unserem Körper bei intensiver Anstrengung zu wenig Sauerstoff zur Verfügung steht. Bei dieser anaeroben Energiebereitstellung sammelt sich als Endprodukt des Stoffwechsels Laktat in den Zellen an, was diese ansäuert.

Bei gewissen Krebszellen sind Abläufe im Stoffwechsel gestört und es werden auch bei ausreichender Sauerstoffversorgung grosse Mengen Laktat produziert, um den Energiebedarf zu decken. Dieses Phänomen ist als «Warburg-Effekt» bekannt, der erstmals von Otto Warburg beobachtet wurde und für dessen Entdeckung er im Jahr 1913 den Nobelpreis für Physiologie oder Medizin erhalten hat.

Transportwege blockieren

Um das Laktat abzutransportieren und die damit einhergehende Ansäuerung zu reduzieren, nutzen Krebszellen ein Transport-Protein, Monocarboxylat-Transporter 4, kurz «MCT4», das in der Zellmembran eingebettet ist. Dieser Transport erhöht die Laktat-Konzentration ausserhalb der Krebszellen und säuert ihre Umgebung an.

Dies fördert das Tumorwachstum und die Metastasierung – denn das exportierte Laktat wird durch ein weiteres Transport-Protein (MCT1) in andere Krebszellen eingeschleust, wo es ihnen als Nahrung dient. Deshalb gilt es als vielversprechender Ansatz, die Laktattransporter MCT1 und MCT4 zu blockieren, um gewisse Krebsarten anzugreifen.

Bislang existieren jedoch auf dem Markt keine zugelassenen Hemmstoffe für diese Transporter. «Um solche wirksamen und hochspezifischen Hemmstoffe zu entwickeln, braucht es detaillierte Kenntnisse über die Struktur von MCT1 und MCT4», sagt Dimitrios Fotiadis vom Institut für Biochemie und Molekulare Medizin (IBMM) der Universität Bern und dem Nationalen Forschungsschwerpunkt (NFS) TransCure.

Beide Transportproteine gehören zur sogenannten «Solute carrier 16»-Familie (SLC16), die im Körper die Verteilung lebenswichtiger Stoffe kontrollieren und auch bei der Aufnahme, Wirkung und Ausscheidung von Medikamenten eine zentrale Rolle spielen. Daher würden sich besonders MCT1 und MCT4 als Zielproteine zu therapeutischen Zwecken eignen.

Bis jetzt ist die Struktur eines solchen SLC16 Laktat-Transporters jedoch noch nicht entschüsselt und veröffentlicht worden. Dies ist nun der Forschungsgruppe um Dimitrios Fotiadis gelungen. Die Ergebnisse der Studie wurden im Journal «Nature Communications» publiziert.

Vielversprechende «Andockstelle» entdeckt

Das Team um Fotiadis liefert die erste hochaufgelöste Struktur eines mit MCT1 und MCT4 «verwandten» Laktattransport-Proteins aus der SLC16-Familie (SfMCT).

«Mit der langersehnten Struktur eines Proteins der SLC16-Familie erhalten wir Einblicke in deren molekularen Wirkmechanismus», sagt Patrick Bosshart vom IBMM und NFS TransCure, Erstautor der Studie. Die Forschenden untersuchten auch die «Transporteigeschaften» von SfMCT und mögliche «Andockstellen» für Hemmstoffe.

«Die entschlüsselte Struktur von SfMCT zusammen mit unserer ausführlichen Transportstudie können nun dazu beitragen, Arzneistoffe basierend auf Modell-Strukturen von MCT1 und MCT4 zu entwickeln», sagt Dimitrios Fotiadis, Letztautor der Studie. Von grosser Bedeutung ist dabei die Entdeckung, dass die SfMCT-Struktur eine «Andockstelle» für Wirkstoffe aufweist, die von der Aussenseite der Zelle zugänglich ist (eine sogennante «outward-open»-Konformation). Diese Konformation ist aus pharmakologischer Sicht wichtig, um basierend auf der SfMCT-Struktur Modelle von MCT1 und MCT4 zu erstellen und an ihnen Hemmstoffe zu erproben.

Die Studie wurde vom Schweizerischen Nationalfonds SNF und dem in Bern angesiedelten Nationalen Forschungsschwerpunkt (NFS) «TransCure» finanziell unterstützt.

NFS TransCure: Zelluläre Transportmechanismen verstehen

Der Nationale Forschungsschwerpunkt (NFS) TransCure ist an der Universität Bern angesiedelt und vernetzt schweizweit 15 Forschungsgruppen aus der Strukturbiologie, Chemie und Medizin/Physiologie. «Trans» steht für Transportproteine oder translationale Forschung und «Cure» für Heilung. Ziel des Forschungsschwerpunkts ist es, Transportproteine auf der Oberfläche von Zellen des menschlichen Körpers zu untersuchen, die für den Transport lebenswichtiger Nährstoffe in die Zellen – beispielsweise von Mineralstoffen wie Natrium, Aminosäuren, Zucker oder Vitaminen – zuständig sind. Dabei besteht besonders bei SLC (Solute Carriers) ein Zusammenhang zu Krankheiten wie Krebs, Diabetes, Bluthochdruck oder Autoimmunerkrankungen. Diese Transportproteine sind daher attraktive Ziele für die Entwicklung von Hemmstoffen. Der NFS TransCure betreibt exzellente Grundlagenforschung, um in Zusammenarbeit mit der Industrie spätere medizinische Anwendungen zu ermöglichen.
https://www.nccr-transcure.ch/

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dimitrios Fotiadis
Institut für Biochemie und Molekulare Medizin (IBMM), Universität Bern, und Nationaler
Forschungsschwerpunkt TransCure
Tel. +41 031 631 41 03 / dimitrios.fotiadis@ibmm.unibe.ch

Originalpublikation:

Patrick D. Bosshart, David Kalbermatter, Sara Bonetti & Dimitrios Fotiadis: Mechanistic basis of L-lactate transport in the SLC16 solute carrier family, Nature Communications, 14. Juni 2019, https://www.nature.com/articles/s41467-019-10566-6

Weitere Informationen:

https://tinyurl.com/Transportprotein
https://www.nature.com/articles/s41467-019-10566-6

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuartiges Antibiotikum gegen Problemkeime in Sicht
21.11.2019 | Justus-Liebig-Universität Gießen

nachricht Neue Forschungsinitiative CHEM|ampere: Nachhaltige chemische Produktion mit Elektrizität
21.11.2019 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sichere Datenübertragung mit Ultraschall am Handy: neue Methode zur Nahfeldkommunikation

21.11.2019 | Kommunikation Medien

Rasante Entstehung von Antibiotikaresistenzen im Behandlungsalltag

21.11.2019 | Medizin Gesundheit

Gesundheits-App als Fitness-Coach für Familien

21.11.2019 | Kommunikation Medien

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics