Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Krankmachende Proteinfasern abbauen

06.06.2019

ETH-Forschende haben einen neuen Mechanismus gefunden, mit dem sich Hirnzellen vor Proteinanhäufungen schützen. Die Anhäufungen spielen eine Rolle bei der Parkinson-Krankheit und weiteren neurodegenerativen Leiden. Darauf aufbauend liessen sich nun neue Therapieansätze entwickeln.

Anhäufungen des Proteins Alpha-Synuclein in den Nervenzellen des Gehirns spielen eine wichtige Rolle bei der Parkinson-Krankheit und bei weiteren neurodegenerativen Krankheiten. Es gibt Hinweise, dass solche Proteinanhäufungen von Nervenzelle zu Nervenzelle wandern können, was zum Fortschreiten der Krankheit führt.


Alpha-Synuclein-Fibrillen. Hier solche, die zu Forschungszwecken im Labor hergestellt wurden in einer elektronenmikroskopischen Aufnahme. Der Durchmesser der Fibrillen beträgt rund 10 Nanometer.

ETH Zürich / Juan Gerez

Ein Forscherteam unter der Leitung von ETH-Wissenschaftlern hat diesen Transport nun untersucht und dabei herausgefunden, wie der Körper die schädlichen Anhäufungen beseitigen kann. Die Erkenntnis eröffnet neue Ansätze für die Therapie von neurodegenerativen Krankheiten.

Krankheitsrelevant sind lange Fasern (Fibrillen), zu denen sich eine Vielzahl von Alpha-Synuclein-Molekülen zusammenlagern können.

Die einzelnen, nicht zusammengelagerten Alpha-Synuclein-Moleküle hingegen sind für die Funktion des gesunden Hirns zentral: Das Protein spielt eine wichtige Rolle bei der Ausschüttung des Neurobotenstoffs Dopamin in den Synapsen von Nervenzellen.

Lagert sich das Protein in Nervenzellen von Patienten zu Fibrillen zusammen, wozu es zunächst seine dreidimensionale Form ändern muss, kann es diese Funktion nicht mehr wahrnehmen.

Ausserdem sind die Fibrillen für die Nervenzellen toxisch. Dopaminproduzierende Zellen sterben, es kommt im Gehirn zu einer Dopamin-Unterversorgung und als Folge davon zu den für die Parkinson-Krankheit typischen Symptomen wie dem Muskelzittern.

Abbaumechanismus entschlüsselt

In Zellkulturexperimenten zeigten die Forschenden, dass es die Alpha-Synuclein-Fibrillen sind, welche von gesunden Zellen aufgenommen werden und sich in diesen anhäufen. «Nachdem die Fibrillen in eine neue Zelle gelangt sind, rekrutieren sie dort weitere Alpha-Synuclein-Moleküle, welche ihre Form ändern und sich anlagern.

Man nimmt an, dass die Fibrillen auf diese Wiese Zelle um Zelle und mit der Zeit ganze Hirnregionen infizieren», erklärt Paola Picotti, Professorin für die Biologie von Proteinnetzwerken an der ETH Zürich. Sie konzipierte die Studie, die Juan Gerez, ein ehemaliger Postdoktorand in ihrer Gruppe, leitete und in der jüngsten Ausgabe des Fachmagazins Science Translational Medicine [http://dx.doi.org/10.1126/scitranslmed.aau6722] veröffentlichte.

Ausserdem konnten die Wissenschaftler der ETH Zürich, des Universitätsspitals Zürich und der Universität von Kalifornien in San Diego einen zellulären Mechanismus entschlüsseln, mit dem Alpha-Synuclein-Fibrillen natürlicherweise abgebaut werden.

Es handelt sich dabei um einen als SCF bezeichneten Proteinkomplex, der die Alpha-Synuclein-Fibrillen spezifisch erkennt und sie einem bekannten zellulären Abbaumechanismus zuführt.

Auf diese Weise wird die Ausbreitung der Fibrillen blockiert, wie die Wissenschaftler in Versuchen bei Mäusen zeigen: Schalteten die Forschenden die Funktion von SCF aus, wurden die Alpha-Synuclein-Fibrillen den Nervenzellen nämlich nicht mehr abgebaut. Stattdessen häuften sie sich in den Zellen an und breiteten sich im Gehirn aus.

Stammzell- oder Gentherapie

Picotti und Gerez sehen Möglichkeiten, wie dieser SCF-Abbaumechanismus therapeutisch genutzt werden kann. «Je aktiver der SCF-Komplex ist, desto stärker werden die Alpha-Synuclein-Fibrillen abgebaut, was dem Fortschreiten von neurodegenerativen Krankheiten entgegenwirken könnte», sagt Gerez.

Der SCF-Komplex sei sehr kurzlebig und zerfällt innerhalb von Minuten. In therapeutischen Ansätzen gehe es einerseits darum, diesen Komplex zu stabilisieren, und andererseits, seine Fähigkeit zu erhöhen, mit Alpha-Synuclein-Fibrillen zu wechselwirken. Dazu könnten zum Beispiel Medikamente entwickelt werden.

Ein weiterer Ansatz, Parkinsonpatienten zu helfen, sei die Transplantation von Nerven-Stammzellen ins Gehirn von Patienten, erklärt Picotti. Bisherige Versuche seien wenig erfolgreich gewesen, weil die gesunden Zellen im Gehirn wiederum von Alpha-Synuclein-Fibrillen infiziert worden seien.

«Wenn es uns gelingt, die Stammzellen so zu verändern, dass sie keine Fibrillen aufnehmen oder aufgenommene Fibrillen sofort wieder abbauen, könne dies die Stammzelltherapie entscheidend voranbringen», sagt die ETH-Professorin.

Und schliesslich könnte auch mittels Gentherapie versucht werden, in Nervenzellen den SCF-Komplex zu stabilisieren und damit seine Aktivität zu erhöhen. «Was mögliche Therapien angeht, stehen wir jedoch noch ganz am Anfang», betont Gerez. «Und ob sich eine wirksame Therapie entwickeln lässt, ist noch nicht klar.»

Originalpublikation:

Gerez et al.: A cullin-RING ubiquitin ligase targets exogenous alpha-synuclein and inhibits Lewy body-like pathology. Science Translational Medicine 2019: eaau6722, doi: 10.1126/scitranslmed.aau6722 [http://dx.doi.org/10.1126/scitranslmed.aau6722]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2019/06/parkinson-...

Hochschulkommunikation | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kältefalle für Zellen und Organismen - Forschung an verbessertem Mikroskopieverfahren
18.06.2019 | Technische Universität Darmstadt

nachricht Ursache von "Erschöpfungszustand" von Immunzellen gefunden
18.06.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

Globalisierung und Klimawandel sind zwei der großen Herausforderungen für die Luftfahrt. Der »European Flightpath 2050 – Europe’s Vision for Aviation« der Europäischen Kommission für Forschung und Innovation sieht für Europa eine Vorreiterrolle bei der Vereinbarkeit einer angemessenen Mobilität der Fluggäste, Sicherheit und Umweltschutz vor. Dazu müssen sich Design, Fertigung und Systemintegration weiterentwickeln. Einen vielversprechenden Ansatz bietet eine wissenschaftliche Kooperation in Aachen.

Das Fraunhofer-Institut für Produktionstechnologie IPT und der Lehrstuhl für Digital Additive Production DAP der RWTH Aachen entwickeln zurzeit eine...

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Teilautonome Roboter für die Dekontamination - den Stand der Forschung bei Live-Vorführungen am 25.6. erleben

18.06.2019 | Veranstaltungen

KI meets Training

18.06.2019 | Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Additive Fertigung zur Herstellung von Triebwerkskomponenten für die Luftfahrt

18.06.2019 | Maschinenbau

Zwei erdähnliche Planeten um einen der kleinsten Sterne – und die Möglichkeit, von dort aus die Erde nachzuweisen

18.06.2019 | Physik Astronomie

Neues aus der Kinderstube der Diamanten

18.06.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics