Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kranke von gesunden Blutzellen trennen: Bayreuther Physiker entdecken neuen Effekt

09.04.2019

Bei zahlreichen Krankheiten wie Malaria oder Krebs unterscheiden sich kranke und gesunde Blut- und Körperzellen durch ihren Härtegrad. Durch einen neuen physikalischen Effekt lassen sie sich leicht voneinander trennen. Dabei sorgen Strömungen in Mikrokanälen dafür, dass sich von selbst härtere von weicheren Zellen trennen. Dies hat jetzt ein internationales Forschungsteam unter der Leitung des Bayreuther Physikers Prof. Dr. Walter Zimmermann entdeckt. In der Fachzeitschrift „Physical Review Letters“ stellen die Wissenschaftler ihre grundlegenden Erkenntnisse vor und zeigen deren medizinisches Anwendungspotenzial.

Mikrokanäle haben winzige Durchmesser zwischen 10 und 500 Mikrometern. Wenn Blutzellen, Körperzellen oder weiche Kapseln in der Strömung einer wässrigen Flüssigkeit durch Mikrokanäle mit geradlinigen Seitenwänden hindurchgeleitet werden, werden sie durch die Strömung in eine Drehbewegung versetzt.


Verteilung von Teilchen in einem Mikrokanal mit geradlinigen (oben) und mit welligen Seitenwänden (unten).

Grafik: Christian Göppner / Uni Bayreuth

Dadurch bewegen sie sich auf die Kanalmitte wie auf eine imaginäre Anziehungslinie („Attraktor“) zu. An dieser Linie wandern dann alle Teilchen – unabhängig von ihrer Härte oder Größe – entlang. Forschergruppen der Universitäten Bayreuth und Grenoble haben schon vor einigen Jahren die Erklärung für dieses Phänomen gefunden:

Entscheidend ist dabei, dass die weichen Teilchen ihre Form unter dem Einfluss der Druck- und Strömungsverhältnisse im Kanal ändern.

... mehr zu:
»Blutzellen »Mikrokanäle

„Wir waren daher neugierig darauf, wie sich weiche Teilchen verhalten, wenn sie in Strömungen durch Mikrokanäle mit welligen Wänden wandern. Diese Kanäle haben eine symmetrische Form, weil sie eine gerade Längsachse haben, während ihr Durchmesser abwechselnd kleiner und größer wird. Zuvor war noch nie untersucht worden, wie sich die Wanderungsbewegungen von Teilchen unter diesen Verhältnissen ändern“, berichtet Zimmermann.

Ein neues Projekt der beiden Forschergruppen in Bayreuth und Grenoble sowie des Forschungszentrums Jülich führte jetzt zu überraschenden Resultaten:

In den Kanälen mit gewellten Seitenwänden entsteht nicht nur eine Anziehungslinie in der Kanalmitte, sondern es bilden sich außerdem zwei weitere Anziehungslinien. Diese befinden sich zwischen der Kanalmitte und den beiden Seitenwänden und verlaufen parallel zu den Seitenwänden ebenfalls wellenförmig.

Weichere Kapseln bewegen sich in der Strömung zur Kanalmitte und wandern auf dieser Längsachse voran. Härtere Kapseln dagegen schwenken auf die wellenförmigen Anziehungslinien ein.

„Aufgrund dieser grundlegenden physikalischen Entdeckung wollten wir herausfinden, ob sich daraus Anwendungen für die Medizin ableiten lassen, und haben das Verhalten von härteren und weicheren roten Blutzellen untersucht“, sagt Winfried Schmidt M.Sc., Doktorand im Elitestudienprogramm Biological Physics in Bayreuth.

Denn es gibt zahlreiche Krankheiten, wie etwa Malaria, Krebs oder Diabetes mellitus, die dazu führen, dass sich die Härte von Zellen verändert. Je nach Erkrankung, sind kranke Zellen entweder härter oder weicher als gesunde Zellen. Wie sich herausstellte, lassen sich in allen diesen Fällen kranke und gesunde Zellen mit demselben einfachen Verfahren trennen:

Sie wandern im Mikrokanal zu unterschiedlichen Anziehungslinien und können am Ende des Kanals getrennt eingesammelt werden. So lassen sich voraussichtlich Rückschlüsse auf den Schweregrad und auf weitere Merkmale einer Erkrankung ziehen.

Weitere Anwendungspotenziale ergeben sich daraus, dass nicht nur härtere und weichere, sondern auch größere und kleinere weiche Teilchen auf diese Weise getrennt werden können: Kleinere Teilchen bewegen sich auf der Längsachse voran, größere auf den welligen äußeren Anziehungslinien.

Die jetzt veröffentlichten Erkenntnisse zeigen beispielhaft, wie stark die physikalische Grundlagenforschung durch moderne Computer und Großrechner vorangetrieben wird. „Unsere Resultate haben wir durch theoretische Überlegungen und Berechnungen sowie durch Computersimulationen erzielt. Physical Review Letters, eine der führenden Fachzeitschriften in der Physik, fand unsere Studie bereits ohne experimentelle Überprüfung so überzeugend, dass sie zur Veröffentlichung angenommen wurde“, sagt Erstautor Matthias Laumann M.Sc., Physik-Doktorand an der Universität Bayreuth. „Wir würden uns freuen, wenn unsere Publikation Experimente anregt, in denen andere Forschungsgruppen weitere spannende Anwendungspotenziale in und außerhalb der Medizin entdecken“, ergänzt Zimmermann.

Forschungskooperationen:

Professor Dr. Chaouqi Misbah von der Universität Grenoble ist Senior Fellow im International Fellowship Programm der Universität Bayreuth und Kooperationspartner des Elitestudienprogramm „Biologische Physik“ im Elitenetzwerk Bayern (ENB). M. Laumann, W. Schmidt, A. Farutin, C. Misbah und W. Zimmermann sind Mitglied der Graduiertenschule „Living fluids“ bei der Deutsch-Französischen Hochschule mit Sitz in Saarbrücken (http://living-fluids.uni-saarland.de).

Wissenschaftliche Ansprechpartner:

Prof. Dr. Walter Zimmermann
Lehrstuhl für Theoretische Physik I
Universität Bayreuth
Telefon: +49 (0)921 55-3181
E-Mail: walter.zimmermann@uni-bayreuth.de

Originalpublikation:

M. Laumann, W. Schmidt, A. Farutin, D. Kienle, S. Förster, C. Misbah, W. Zimmermann: Emerging Attractor in Wavy Poiseuille Flows Triggers Sorting of Biological Cells, Phys. Rev. Lett. 122, 128002 (2019), DOI: http://dx.doi.org/10.1103/PhysRevLett.122.128002

Christian Wißler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Berichte zu: Blutzellen Mikrokanäle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics