Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kraftwerke der Zelle weiter ausspioniert

01.11.2016

Grundlagenforschung zur Energiegewinnung der Zelle: Erstmals erklären Göttinger Forscher, wie zwei unabhängige Systeme der Proteinbildung miteinander verknüpft sind. Veröffentlichung im Wissenschaftsjournal „Cell“.

Störfälle in den Kraftwerken der Zelle (Mitochondrien) bringen die Energieproduktion aus dem Gleichgewicht, zudem machen sie krank. Die Folge können schwere Erkrankungen des Nervensystems und des Herzens sein, die häufig tödlich verlaufen.


Fluoreszenz-mikroskopische Aufnahme eines Mitochondrien-Netzwerkes (grün) und des Zellkerns (blau) in einer menschlichen Zelle.

Foto: umg/rehling


Erst-Autorin und Senior-Autoren der Publikation (v.l.) Dr. Ricarda Richter-Dennerlein, Prof. Dr. Peter Rehling und Dr. Sven Dennerlein betrachten Proteinkomplexe auf einem Röntgenfilm.

umg/spförtner

Göttinger Grundlagenforscher um Prof. Dr. Peter Rehling, Direktor des Instituts für Zellbiochemie an der Universitätsmedizin Göttingen (UMG), unter-suchen deshalb unter anderem, wie genau die Kraftwerke in Zellen zusammengebaut werden. Ihre neuesten Erkenntnisse klären bisher unbekannte Details zum Zusammenbau der Proteine zu der zentralen Atmungskette.

Sie könnten helfen, Defekte oder Störungen im Maschinenpark der Energiekraftwerke der Zelle besser zu erkennen oder vielleicht sogar zu reparieren. Der Europäische Forschungsrat (ERC) fördert die Göttinger Forschung über Zellkraftwerke seit 2014 durch einen ERC Advanced Investigator Grant. Die jüngsten Ergebnisse sind veröffentlicht in der renommierten wissenschaftlichen Zeitschrift „Cell“.

Originalpublikation: Ricarda Richter-Dennerlein, Silke Oeljeklaus, Isotta Lorenzi, Christin Ronsör, Bettina Bareth, Alexander Benjamin Schendzielorz, Cong Wang, Bettina Warscheid, Peter Rehling, Sven Dennerlein. Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein. CELL, Volume 167, Issue 2, p471–483.e10, 6 October 2016. DOI: http://dx.doi.org/10.1016/j.cell.2016.09.003

HINTERGRUNDINFORMATIONEN

Die Kraftwerke der Zelle, die Mitochondrien, wandeln Energie aus der Nahrung in eine allgemeingültige Energiewährung, das ATP, um. Für die Herstellung von ATP besitzt jede Zelle Miniaturkraftwerke, also einen hochentwickelten Maschinenpark. Die dafür notwendige Maschinerie wird „Atmungskette“ genannt, weil der Prozess der ATP-Produktion zirka 95 Prozent des Sauerstoffs benötigt, den wir täglich einatmen.

Die Atmungskette ist aus einer großen Vielzahl von einzelnen Proteinen (Eiweißmolekülen) zusammengebaut. Mitochondrien haben eigenes Erbgut, das Informationen für den Zusammenbau einiger Proteine der Atmungskette enthält. „Die überwiegende Zahl von Proteinen, die in der Atmungskette ihren Dienst tun, wird allerdings außerhalb der Mitochondrien synthetisiert und von Genen, die sich in unserem Zellkern befinden, kodiert. Sie müssen, nachdem sie hergestellt wurden, vom Zellraum in die Mitochondrien transportiert werden und dort die Proteine finden, die in den Mitochondrien selbst gemacht werden“, sagt die Erst-Autorin der Publikation, Dr. Ricarda Richter-Dennerlein vom Institut für Zellbiochemie der UMG.

FORSCHUNGSERGEBNISSE IM DETAIL

Woher wissen die Mitochondrien eigentlich, wie viel Protein sie selbst herstellen müssen, um keinen Überschuss zu produzieren? Wie gelingt es den Mitochondrien, eine ausbalancierte Menge an Proteinen zu produzieren, die dann mit den Proteinen, die von außen kommen, zum Maschinenpark zusammengebaut werden zu können?

Die Wissenschaftler am Institut für Zellbiochemie der UMG haben herausgefunden, dass Ribosomen in den Mitochondrien Proteine nur teilweise synthetisieren und dann eine Pause einlegen. Erst wenn Proteine, die von außerhalb der Mitochondrien stammen, in die Mitochondrien importiert werden, fangen die Ribosomen wieder an zu arbeiten und stellen das vollständige Protein in den Mitochondrien her. Auf diese Weise kann sichergestellt werden, dass ein Protein, das in den Mitochondrien entsteht, nur dann wirklich hergestellt wird, wenn sein Partner, der von außen in die Mitochondrien hinein transportiert wird, vorhanden ist.

Die Untersuchungen der Arbeitsgruppe erklären damit erstmals, wie zwei unabhängige Systeme der Proteinbildung, eines außerhalb der Mitochondrien und eines innerhalb der Mitochondrien, miteinander verknüpft sind. Diese Untersuchungen sind von besonderer Bedeutung, da Defekte bei der Ausbildung der Atmungskette zu schweren und oft tödlich verlaufenden Erkrankungen des Nervensystems und des Herzens führen können.

WEITERE INFORMATIONEN:
Universitätsmedizin Göttingen, Georg-August-Universität
Institut für Zellbiochemie
Prof. Dr. Peter Rehling, Telefon: 0551 / 39-5947
Humboldtallee 23, 37073 Göttingen
peter.rehling@medizin.uni-goettingen.de

Stefan Weller | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.universitaetsmedizin-goettingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics