Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Korrektursoftware erleichtert Quantifizierung der Entwicklungsschritte von Stammzellen

21.06.2017

Inzwischen ist es möglich, die Entwicklung einer einzelnen Zelle und die dafür entscheidenden Faktoren unter dem Mikroskop kontinuierlich zu verfolgen. Störungen wie Schatten in den Bildern oder Hintergrundveränderungen erschweren jedoch die Interpretation der Daten. Nun haben Forscherinnen und Forscher der Technischen Universität München (TUM) und des Helmholtz Zentrums München eine Software entwickelt, die die Bilder so korrigiert, dass bisher verborgene Entwicklungsschritte sichtbar werden.

Entwickelt sich eine Stammzelle zu einer spezialisierten Zelle, so geschieht dies in mehreren Schritten. Doch welche Signal-Proteine sind an den entscheidenden Abzweigungen ihres Entwicklungswegs aktiv?


Mit der Software BaSiC verbessertes Mosaikbild eines Maushirn-Schnitts.

Bild: Tingying Peng / TUM/HMGU

Mit der sogenannten Time-lapse microscopy können Forscherinnen und Forscher unter dem Mikroskop einzelne Zellen in sehr hoher zeitlicher Auflösung beobachten und mit Hilfe von Fluoreszenzmarkierungen erkennen, wann genau welches dieser Proteine in der Zelle auftaucht.

Eine einmal identifizierte Stammzelle wird dann mittels Zelltracking-Software über mehrere Tage hinweg quasi auf Schritt und Tritt beobachtet. Diese „Beschattungsarbeit“ gestaltet sich für die Stammzellforscher jedoch oft schwierig.

„Die Bilddaten sind oft von unregelmäßiger Helligkeit und einem Verblassen des Hintergrunds im Zeitverlauf gestört“, erklärt Dr. Tingying Peng, Mitarbeiterin der Arbeitsgruppe Quantitative Single Cell Dynamics am Institute of Computational Biology (ICB) des Helmholtz Zentrum München. „Dadurch werden Faktoren, die bei der Entscheidung der Zelle für eine Entwicklungsrichtung auschlaggebend sind, oft nicht oder nur schlecht erkannt.“

Zwar gibt es Algorithmen, die diese Störungen herausfiltern, jedoch benötigen diese entweder extra angefertigte Referenzbilder, eine große Anzahl an Bildern pro Datensatz oder erfordern komplexe manuelle Einstellungen. Zudem korrigiert keine der bestehenden Methoden die Veränderung des Hintergrundes über die Zeit, was die Quantifizierung einzelner Zellen erschwert.

Ein Algorithmus eliminiert Hintergrundveränderungen

Nun stellt Dr. Tingying Peng zusammen mit Dr. Carsten Marr und Professor Nassir Navab, Inhaber des Lehrstuhls für Informatikanwendungen in der Medizin und Augmented Reality an der TU München, einen Algorithmus vor, der die Störfaktoren mit wenigen Bildern pro Datensatz korrigiert.

Die Software trägt den Namen „BaSiC“ und ist frei verfügbar. Sie ist für viele im Bereich Bioimaging verwendete Bildtypen anwendbar, darunter auch für Mosaikbilder, die aus vielen kleinen Einzelbildern bestehen und beispielsweise zur Darstellung von großen Gewebeschnitten verwendet werden. „Vor allem aber“, erklärt Dr. Peng, „kann BaSiC Hintergrundveränderungen in Zeitraffervideos korrigieren. Dies macht es zu einem interessanten Werkzeug für Stammzellforscher, die das Auftauchen bestimmter Faktoren frühzeitig erkennen wollen.“

Das Wesentliche sichtbar machen

Wie gut das neue Korrekturprogramm die Analyse der einzelnen Entwicklungsschritte von Stammzellen verbessert, zeigten die Wissenschaftler am Beispiel von Zeitraffervideos von Blutstammzellen. Mit diesen hatten sie Zellen über sechs Tage hinweg beobachtet. Zu einem bestimmten Zeitpunkt dieser Beobachtungsspanne entscheidet sich eine undifferenzierte Vorläuferzelle für eine von zwei möglichen Entwicklungslinien, die sich danach zu unterschiedlichen reifen Blutzellen fortentwickeln.

Auf den mit BaSiC korrigierten Bildern konnten die Forscher zum Zeitpunkt der Aufspaltung die deutliche Zunahme der Intensität eines bestimmten Transkriptionsfaktors in einer der beiden Zelllinien feststellen, während die Menge des Markers in der anderen Zelllinie gleich blieb. Ohne die vorherige Aufbereitung der Bilder jedoch zeigte sich dieser Unterschied nicht.

„Mit BaSiC konnten wir hier wichtige Entscheidungsfaktoren sichtbar machen, die sonst vor lauter Störungen unsichtbar geblieben wären“, sagt Nassir Navab. „Das Fernziel dieser Forschung ist es, die Entwicklung von Stammzellen gezielt beeinflussen zu können, um beispielsweise für Infarktpatienten neue Herzmuskelzellen züchten zu können. Die neuen Beobachtungsmöglichkeiten bringen uns diesem Ziel ein Stück weit näher.“

Das Korrekturprogramm BaSiC entstand aus einer engen Zusammenarbeit der Lehrstühle für Mathematische Modellierung biologischer Systeme und Informatikanwendungen in der Medizin und Augmented Reality der Technischen Universität München mit dem Institute of Computational Biology (ICB) des Helmholtz Zentrums München. Weiterhin beteiligt waren das Department of Biochemistry and Biophysics der University of California in San Francisco (USA), sowie das Department of Biosystems Science and Engineering (D-BSSSE) der ETH Zürich und der Lehrstuhl für Computer Aided Medical Procedure der Johns Hopkins Universität Baltimore (USA).

Publikation

Tingying Peng, Kurt Thorn, Timm Schroeder, Lichao Wang, Fabian J. Theis, Carsten Marr and Nassir Navab. BaSiC: A Tool for Background and Shading Correction of Optical Microscopy Images.
Nature Communications 8, 14836 (2017) – DOI: 10.1038/ncomms14836
https://www.nature.com/articles/ncomms14836

Kontakt:

Dr. Carsten Marr
ICB Institute of Computational Biology
Helmholtz Zentrum München
Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
Tel.: +49 89 3187 2158 – E-Mail: carsten.marr@helmholtz-muenchen.de
Web: http://bit.ly/2qVMp2w – Software: http://bit.ly/2sm2WfH

Prof. Dr. Nassir Navab
Lehrstuhl für Informatikanwendungen in der Medizin und Augmented Reality
Technische Universität München
Boltzmannstr. 3, 85748 Garching, Germany
Tel.: +49 89 289 17057 – E-Mail: nassir.navab@tum.de – Web: http://campar.in.tum.de/Main/NassirNavab

Weitere Informationen:

https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/33987/ Link zur Pressemitteilung

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Magische kolloidale Cluster
11.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kupferverbindung als Recheneinheit in Quantencomputern
11.12.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

Plastics Economy Investor Forum: Treffpunkt für Innovationen

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magische kolloidale Cluster

11.12.2018 | Biowissenschaften Chemie

Kupferverbindung als Recheneinheit in Quantencomputern

11.12.2018 | Biowissenschaften Chemie

Kraftwerke erzeugen mehr Ultrafeinstaub als Verkehr

11.12.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics