Kontrolliertes Leuchten aus der Zelle – Neue Mikroskopiertechnik liefert Bilder von Zellprozessen

Mikroskopisches „SMILEY“ aus einzelnen mit Laserlicht zum Leuchten gebrachten Molekülen gebaut. Links mit herkömmlichen Verfahren gemessen, rechts, nachdem die einzelnen Moleküle nacheinander aufblitzen und dadurch erheblich schärfer abgebildet werden können. TU Braunschweig, Institut für Physikalische und Theoretische Chemie<br>

Die Methode heißt Fluoreszenz-Superauflösungs-Mikroskopie, macht selbst kleinste Biomoleküle sichtbar und liefert so ganz neue Bilder aus lebenden Zellen: live, in 3D und hoch präzise. An Grundlagen und Feintuning arbeiten Forscher der Technischen Universität (TU) Braunschweig jetzt in einem von der Universität Würzburg koordinierten Verbundprojekt des Bundesministeriums für Bildung und Forschung (BMBF) mit. Die Arbeiten allein in Braunschweig werden mit knapp 590.000 Euro gefördert.

Die neue Methode zur Biomolekülbobachtung arbeitet mit Licht. „Wir markieren Molekülstrukturen gezielt mit Farbstoffen und regen sie mit Laserlicht zum Leuchten an“, beschreibt Professor Philip Tinnefeld vom Institut für Physikalische und Theoretische Chemie der TU Braunschweig das Vorgehen. Diese Fluoreszenz lässt sich mit einem Mikroskop erkennen und mit einer Kamera festhalten. Allerdings dürfen nicht alle Moleküle gleichzeitig leuchten. „Dann sehen wir nur einen großen Fleck, den wir nicht deuten können“, sagt er.

Deshalb schalten die Forscher die Fluoreszenz der Farbstoffe gezielt an oder aus. Mit einer Zugabe von Vitamin C zum Beispiel können sie einen natürlichen Aus-Zustand der Teilchenfluoreszenz verlängern. Wann welches markierte Teilchen in diesen Aus-Zustand geht, funktioniert nach dem Prinzip Zufall. Deshalb blitzen manche Teilchen auf, während andere noch „aus“ und erst später zu sehen sind. Mit diesen Momentaufnahmen können die Wissenschaftler einzelne Moleküle bis auf 20 Nanometer genau orten. Selbst Biomoleküle, die sehr dicht nebeneinander liegen, lassen sich auf diese Weise sicher auseinander halten.

Dass die Methode funktioniert, konnten die TU-Forscher schon zeigen. Jetzt wollen sie die Mechanismen dahinter genauer ins Visier nehmen und noch mehr Möglichkeiten zur Fluoreszenzkontrolle finden. „Das Ziel des Verbundprojektes ist, maßgeschneiderte Farb und- Zusatzstoffkombinationen für die Beobachtung verschiedener Arten Biomoleküle und Prozesse zu entwickeln“, berichtet Tinnefeld.

Außerdem konstruieren die Braunschweiger Forscher im Rahmen des Projektes Modellsubstanzen, mit denen sich die neuartigen Mikroskope kalibrieren lassen. „Die Zahl der Forschungsarbeiten zur Superauflösungs-Mikroskopie explodiert gerade“, berichtet Tinnefeld. „Doch bisher fehlt ein Standard, um die Ergebnisse vergleichen zu können.“ Auch wenn Messungen fehlschlagen, ist oft unklar, ob es an einer Geräteeinstellung oder an der Probe liegt. Verlässliche Vergleichsmessungen mit einem „nanoskopischen Lineal“ könnten das klären. In anderthalb Jahren wollen die Forscher dazu erste belastbare Ergebnisse präsentieren.

Das Projekt wird von der Universität Würzburg koordiniert. Beteiligt sind auch der Mikroskophersteller Carl Zeiss Microimaging in Jena, der Siegener Farbstoffspezialist Atto-Tec und Ibidi aus München, die Produkte für Zellanalytik liefern.

Kontakt:
Prof. Dr. Philip Tinnefeld
Institut für Physikalische und Theoretische Chemie
Hans-Sommer-Strasse 10
38106 Braunschweig
Tel.: +49 531 391-5330
E-Mail: p.tinnefeld@tu-braunschweig.de

Media Contact

Dr. Elisabeth Hoffmann idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer