Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplexes Genom von Fingerhirse erstmals in hoher Qualität entschlüsselt

05.09.2017

Fingerhirse verfügt über zwei wichtige Eigenschaften: Die Getreideart ist reich an wichtigen Mineralstoffen, und sie resistent gegenüber Trockenheit und Hitze. Dank einer neuartigen Kombination modernster Technologien konnten Forschende der Universität Zürich das grosse und sehr komplexe Genom der Fingerhirse erstmals in hoher Qualität entschlüsseln. Eine zentrale Grundlage, um die Ernährungssicherheit in Ländern wie Indien und Regionen Afrikas zu verbessern.

Für viele arme Bauern in Indien und Afrika ist die Fingerhirse ein wichtiges Grundnahrungsmittel. Die Getreideart ist nicht nur eine reichhaltige Quelle von Mineralstoffen wie Calcium, Eisen, Magnesium und Zink und enthält viele Vitaminen und essentielle Aminosäuren.


Das sequenzierte Genom der Fingerhirse ist eine zentrale Grundlage, um die Ernährungssicherheit in Ländern wie Indien zu verbessern.

Mathi Thumilan Balachadran

Die Kulturpflanze zeichnet sich auch aus durch ihre Resistenz gegenüber Trockenheit und Hitze. Da sie sehr gesund und zudem glutenfrei ist, wird sie zunehmend auch in Industrieländern als Lebensmittel verwendet. Trotz ihrer Wichtigkeit hat Fingerhirse wissenschaftlich bisher nur sehr wenig Beachtung gefunden.

Grosses und komplexes Genom durch Fusion zweier Pflanzenarten

Fingerhirse ist durch die Verschmelzung von zwei verschiedenen Pflanzenarten entstanden. Die Pflanze ist daher polyploid, das heisst sie verfügt über einen vierfachen Satz an Chromosomen und besitzt nahezu doppelt so viele Gene wie ihre Ursprungsarten. Die Grösse und Komplexität ihres Genoms verleiht der Fingerhirse ihre Widerstandsfähigkeit.

Gleichzeitig hat dies die Genomforschung enorm erschwert. Nun hat es ein internationales Forschungsteam unter der Leitung der Universität Zürich erstmals geschafft, das komplexe Genom der Fingerhirse in hoher Qualität zu entschlüsseln. Es umfasst rund 2,6 Milliarden Basenpaare und besitzt mehr als 62'300 Gene – rund doppelt so viele wie beispielsweise Reis.

Neue Strategie zur Genom-Sequenzierung und -Kartierung

Gut 57'900 Fingerhirse-Gene – mehr als 90 Prozent – kommen in mehr als zwei Kopien vor. Da deren DNA-Sequenzen sehr ähnlich sind, war es schwierig, die zahlreichen entschlüsselten DNA-Abschnitte im gesamten Genom korrekt anzuordnen.

Es gelang dem Team um Kentaro Shimizu, Professor am UZH-Institut für Evolutionsbiologie und Umweltwissenschaften, in Zusammenarbeit mit Ralph Schlapbach and Sirisha Aluri vom Functional Genomics Center der Universität und ETH Zürich diese Schwierigkeiten zu überwinden.

Dazu kombinierten die Wissenschaftler eine ausgeklügelte, von Masaomi Hatakeyama entwickelte Bioinformatikstrategie mit den modernsten Sequenzierungsmethoden sowie einer neuen Technologie, dank der sich lange einzelne DNA-Moleküle im Genom optisch kartieren lassen. «Unsere neu entwickelte Strategie wird helfen, das Genom von weiteren polyploiden Kulturpflanzen zu bestimmen, die sich bisher nicht ermitteln liessen», sagt Shimizu.

Nährstoffversorgung und Trockenheitsresistenz verbessern

In diesem Projekt arbeitete ein interdisziplinäres Team von Forschenden aus Zürich und dem indischen Bangalore zusammen. Unterstützt wurde die Arbeit von der Indo-Swiss Collaboration in Biotechnology (ISCB), einem bilateralen Forschungs- und Entwicklungsprogramm, das von den Regierungen der Schweiz und Indien sowie der Japan Science and Technology Agency finanziert wird.

Ziel ist es, in Indien die Ernährungssicherheit zu verbessern und die Entwicklung der biotechnologischen Forschung zu unterstützen. «Die nun vorliegenden Genomdaten der Fingerhirse eröffnen zahlreiche Möglichkeiten für die moderne Pflanzenzucht. Einerseits, um den Mineralstoffmangel vieler Menschen in Indien aber auch in industrialisierten Ländern zu bekämpfen, und andererseits, um wichtige Kulturpflanzen widerstandsfähiger gegenüber Trockenheit und Dürre zu machen», betont Shimizu.

Literatur:
Masaomi Hatakeyama, Sirisha Aluri, Mathi Thumilan Balachadran, Sajeevan Radha Sivarajan, Andrea Patrignani, Simon Grüter, Lucy Poveda, Rie Shimizu-Inatsugi, John Baeten, Kees-Jan Francoijs, Karaba N. Nataraja, Yellodu A. Nanja Reddy, Shamprasad Phadnis, Ramapura L. Ravikumar, Ralph Schlapbach, Sheshshayee M. Sreeman and Kentaro K. Shimizu. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Research. 5 September 2017. DOI: 10.1093/dnares/dsx036

Kontakt:
Prof. Dr. Kentaro K. Shimizu
Institut für Evolutionsbiologie und Umweltwissenschaften
Universität Zürich
Tel: +41 44 635 67 40
E-Mail: kentaro.shimizu@ieu.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2017/Genom-Fingerhirse.html

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics