Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplexe biologische Systeme können nicht ohne Chaos existieren

17.02.2020

Ein deutsch-russisches Wissenschaftlerteam unter Leitung der Universität Rostock hat erstmals Anzeichen von chaotischen Phänomenen in aquatischen Ökosystemen nachgewiesen, bei denen alle Randparameter unter streng kontrollierten Bedingungen stabil gehalten wurden. Bislang war solches Verhalten nur als Folge von Veränderungen äußerer Faktoren diskutiert worden. Den Biologen gelang es, die Ursachen dieses widersprüchlichen Phänomens, das sie als "Chaosparadoxon" bezeichneten, aufzudecken. Die Ergebnisse würden jüngst in der Zeitschrift Scientific Reports veröffentlicht

Ein gewisser Hang zur Unordnung liegt in der Natur des Lebens. Die chaotische Dynamik einzelner Elemente komplexer Systeme ist ein weit verbreitetes Phänomen und tritt sowohl im Gehirn von Epilepsie-Patienten als auch in sozialen Systemen auf.


Die Hauptakteure des Experimentes – Zooplanktonarten der Ostsee

Fotos: Irena Telesh

So ist z.B. bekannt, dass bei der Lösung von gesellschaftlichen Konflikten starke Oszillationen auftreten können. Auslöser ist in solchen Fällen die Trägheit beim Ausgleich der komplexen Wechselwirkungen zwischen Individuen und sozialen Gruppen mit unterschiedlichen und oft widersprüchlichen Meinungen, Ideen und Bedürfnissen.

Ähnlich komplexe Beziehungen treten auch in aquatischen Ökosystemen auf die, im Gegensatz zu sozialen Systemen, für gezielte experimentelle Untersuchungen genutzt werden können.

„Um den vermehrt diskutierten Hinweisen auf chaotisches Verhalten zumindest einzelner Ökosysteme in einer Weise nachgehen zu können, haben wir parallel an mehreren Miniaturökosystemen Langzeitbeobachtungen durchgeführt und diese auch mehrfach wiederholt. Dabei wurden deren abiotische Randbedingungen konstant gehalten“, erläutert Professor Schubert von der Universität Rostock.

Die Forscher hätten dabei in einem Kraftakt für das ganze Team über zwei Jahre hinweg mehrfach wöchentlich die Artzusammensetzung, Nährstoffkonzentrationen und Leistungsparameter erfasst und sichergestellt, dass keine Störungen auftreten.

Ausgangspunkt der Untersuchungen war eine Organismengemeinschaft, die sich auf der Grundlage von natürlichem Plankton, das in den Küstengewässern der Ostsee gesammelt wurde, in den Miniaturökosystemen entwickelte. Die Gemeinschaft bestand aus Bakterien, Blaualgen, Kleinalgen und Zooplankton.

Damit wurde ein Abbild einer Freiwassergesellschaft geschaffen, das Organismen verschiedener Ebenen des Nahrungsnetzes von Primärproduzenten über mehrere Konsumentenebenen bis hin zu Destruenten (Nährstoffendverbrauchern) umfasste.

„In der Natur bilden aquatische Tier- und Pflanzengemeinschaften komplexe Systeme. Die Organismen, die sie bewohnen, sind in der Regel kurzlebig, so dass bei Umweltveränderungen sehr schnell ein Wechsel im Artinventar erfolgt. Die hier untersuchten Planktongemeinschaften bestehen aus zahlreichen kleinen, weniger als zwei Millimeter großen Lebewesen, die in der Wassersäule schweben. Sie haben einen schnellen Generationswechsel, passen sich effektiv an Veränderungen in der Umwelt an und entwickeln sich schnell weiter“, erklärt Irina Telesh, Doktorin der Biowissenschaften und leitende Forscherin am Zoologischen Institut der Russischen Akademie der Wissenschaften.

Auch in diesem Fall erfordert die Aufdeckung der internen Mechanismen, die die komplexe Dynamik des Planktons in der Natur steuern, langwierige Forschung. Experimente zu chaotischem Verhalten in Ökosystemen sind daher äußerst selten.

Das Ergebnis der Arbeiten war zunächst eine riesige Datenmenge, für deren Analyse herkömmliche Verfahren zur Detektion chaotischen Verhaltens einer kritischen Analyse unterzogen werden mussten, um falsch-positive Ergebnisse erkennen und aussondern zu können. Es stellte sich heraus, dass in allen vier untersuchten Systemen und auf allen Ebenen des Nahrungsnetzes chaotische Episoden auftraten.

Das entdeckte Phänomen wurde als „Chaos-Paradoxon“ bezeichnet, da eigentlich Konstanz der abiotischen Umweltfaktoren auch Konstanz der Wechselwirkungen zwischen den Organismen zur Folge haben sollte, genau diese langandauernde Konstanz aber Auslöser für Veränderung der Dynamik des Systems war.

„Das Überraschendste ist, dass das Chaos gerade unter den stabilsten abiotischen Bedingungen am häufigsten auftrat. Es stellte sich heraus, dass selbst in den ausbalancierten Systemen ohne externe Störungen ein Leben ohne Chaoselemente unmöglich zu sein scheint“, sagt Dr. Sergey Skarlato vom Institut für Zytologie der Russischen Akademie der Wissenschaften. Die Forscher erklären sich das so: unter variablen Bedingungen „löschen“ sich kleine Bilanzungleichgewichte untereinander aus, bei konstanten Bedingungen aber können diese sich akkumulieren und letztlich zu Zusammenbrüchen führen.

Mit diesen Studien konnte gezeigt werden, dass selbst künstlich stabilisierte biologische Systeme komplexen chaotischen Transformationen unterliegen können. Die Unvorhersehbarkeit chaotischen Verhaltens mache es schwierig, die Entwicklung globaler Systeme auf allen Ebenen langfristig korrekt vorherzusagen. Deshalb sei die exakte Kenntnis über die Auslösefaktoren von Transformationen in der Ökologie grundlegende Voraussetzung für eine realitätsnahe Modellierung, ohne die eine belastbare Voraussage für das Verhalten von Ökosystemen unter veränderten Umweltbedingungen nicht möglich ist, lautet das Fazit der Wissenschaftlerinnen und Wissenschaftler.

Die Forschungsarbeiten sind sowohl vom Internationalen Büro des Bundesministeriums für Bildung und Forschung (IB-BMBF) als auch von der Russian Science Foundation unterstützt worden. Die Originalveröffentlichung des Teams von Mitarbeitern der Universität Rostock zusammen mit Kollegen des Zoologischen Institutes der Russischen Akademie der Wissenschaften und des Institutes für Zytologie der Russischen Akademie der Wissenschaften ist unter DOI: 10.1038/s41598-019-56851-8 zu finden.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Hendrik Schubert
Universität Rostock
Mathematisch-Naturwissenschaftliche Fakultät
Institut für Biowissenschaften
Lehrstuhl Ökologie
Tel.: +49 381 498-6070
E-Mail: hendrik.schubert@uni-rostock.de
Web: http://www.biologie.uni-rostock.de/oekologie/home.html

Originalpublikation:

DOI: 10.1038/s41598-019-56851-8

Sissy Gudat | Universität Rostock

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests
08.04.2020 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Mutation senkt Energieverschwendung bei Pflanzen
08.04.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Technologien für Satelliten

Er kommt ohne Verkabelung aus und seine tragende Struktur ist gleichzeitig ein Akku: An einem derart raffiniert gebauten Kleinsatelliten arbeiten Forschungsteams aus Braunschweig und Würzburg. Für 2023 ist das Testen des Kleinsatelliten im Orbit geplant.

Manche Satelliten sind nur wenig größer als eine Milchtüte. Dieser Bautypus soll jetzt eine weiter vereinfachte Architektur bekommen und dadurch noch leichter...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Flugplätze durch Virtual Reality unterstützen

08.04.2020 | Verkehr Logistik

Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests

08.04.2020 | Biowissenschaften Chemie

Kostengünstiges mobiles Beatmungsgerät entwickelt

08.04.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics