Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Komplexe Beziehungen besser verstehen

08.06.2012
Freiburger Forscher zeigen, wie globale Eigenschaften von Netzwerken aus lokalen Merkmalen ersichtlich werden

Von Epidemien, die sich über den Globus ausbreiten, bis zum Beginn eines epileptischen Anfalls im Gehirn: Viele Ereignisse können als Folge von Netzwerkaktivität gesehen werden. Oft ist es von entscheidender Bedeutung, die Eigenschaften dieser Netzwerke zu verstehen.


Durch statistische Analysen können natürliche Netzwerke wie das Nervensystem eines Wurms (oben) mit Modellnetzwerken (unten) verglichen werden. Grafik: Bernstein Center Freiburg; Wurm-Netzwerk nach Varshney et al., PLoS Comp Biol. 2011

Allerdings sind sie häufig zu komplex, um sie vollständig zu beschreiben. Doch Wissenschaftler vom Bernstein Center der Universität Freiburg konnten nun zeigen, wie sich globale Gesetzmäßigkeiten komplexer Netzwerke in lokalen statistischen Eigenschaften niederschlagen, die viel leichter untersucht werden können. Bei ihrer Forschung profitierten die Freiburger von den Hochleistungsrechnern des Bernstein Centers, die normalerweise eingesetzt werden, um die Aktivität von Nervenzellen im Gehirn zu simulieren.

In einem Artikel der Fachzeitschrift PLoS ONE beschreiben Stefano Cardanobile und seine Kollegen, wie sie 200.000 im Computer erzeugte Netzwerke analysiert haben – mit Modellen, die Wissenschaftlerinnen und Wissenschaftler nutzen, um in der Natur vorkommende Netzwerke zu verstehen. Die Modelle verglichen die Forscher mit gut erforschten Netzwerken: dem Stoffwechsel eines Bakteriums, den Beziehungen zwischen Synonymen in einem Wörterbuch und dem Nervennetz eines Wurms. Damit konnten sie jene Modelle bestimmen, die die Eigenschaften realer Netzwerke am besten vorhersagen. Diese Einsichten können Wissenschaftlern unterschiedlichster Disziplinen helfen, das richtige Modell heranzuziehen.
Vor allem konnten die Freiburger aber zeigen, dass es möglich ist, globale Eigenschaften komplexer Netzwerke aus statistischen Daten abzuleiten, die über lokale Merkmale vorliegen. Somit erkennen sie auch dann wichtige Eigenschaften von Netzwerken, wenn diese nicht in Gänze analysiert werden können – was bei großen Systemen, etwa sozialen Kontakten zwischen Menschen oder den Verbindungen im Gehirn, unmöglich wäre. Daher leistet die Studie, so die Autoren, einen wichtigen Beitrag zum besseren Verständnis komplexer Netzwerke.

Kontakt:
Prof. Dr. Stefan Rotter
Bernstein Center Freiburg
Tel.: 0761/203-9316
Fax: 0761/203-9559
E-Mail: stefan.rotter@biologie.uni-freiburg.de
http://dx.plos.org/10.1371/journal.pone.0037911 - Originalveröffentlichung in PLoS ONE: S. Cardanobile, V. Pernice, M. Deger und S. Rotter (2012) Inferring general relations between network characteristics from specific network ensembles.

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.uni-freiburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics