Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kommunikation per Kalziumwelle

22.03.2018

Ohne das Hormon Auxin könnten Pflanzen nicht wachsen und sich entwickeln. Wie es diese Prozesse in Gang setzt, war bislang ungeklärt. Wissenschaftler der Universität Würzburg haben jetzt zentrale Details entschlüsselt.

Das Pflanzenhormon Auxin hat – nach allem, was derzeit bekannt ist – Einfluss auf sämtliche Aspekte des Wachstums und der Entwicklung von Pflanzen. Es lässt das Getreide von der Keimung der Samen bis hin zur Erntereife gedeihen, die Bäume in den Himmel wachsen und Datteln zu süßen Früchten reifen.


siehe Pressemitteilung

Abbildungen: Dirk Becker

Auxin ist damit maßgeblich für die Entstehung der pflanzlichen Biomasse auf der Erde verantwortlich. Das erklärt auch seinen Namen: Der leitet sich von dem Griechischen auxánō ab, was so viel bedeutet wie „ich wachse“.

Aus diesem Grund haben Agrar- und Forstwissenschaftler von je her versucht, den Wirkmechanismus des Wachstumshormons zu verstehen und ihre Erkenntnisse wirtschaftlich nutzbar zu machen. Doch obwohl die chemische Struktur von Auxin bereits in den 1930iger-Jahren identifiziert wurde, ist die Frage, wie das Hormon zu den Zielzellen gelangt und wie es dort seine Wirkung entfaltet, bis heute noch nicht vollständig geklärt.

Bei der Suche nach einer Antwort auf diese Fragen haben Würzburger Pflanzenforscher um den Biophysiker Professor Rainer Hedrich jetzt einen Durchbruch erzielt. In der aktuellen Ausgabe der Fachzeitschrift Nature Communications stellen sie ihre Ergebnisse vor.

Mikroelektroden entschlüsseln den Transportmechanismus

Chemisch betrachtet, handelt es sich bei Auxin um eine vergleichsweise einfache Substanz – in der Fachsprache Indolyl-3-Essigsäure, oder kurz IAA, genannt –, die sich aus der aromatischen Aminosäure Tryptophan herleitet. Pflanzen produzieren das Hormon beispielsweise in der Spross-Spitze und leiten es dann zu den Zielzellen weiter, zu denen auch die Zellen der Wurzel gehören.

„Wir haben für unsere neueste Studie die Wurzelhaarzellen unter die Lupe genommen, deren Entwicklung aus polar auswachsenden Zellen vom Auxin-Import anhängig ist“, schildert Rainer Hedrich den Ausgangspunkt der Würzburger Forschung. Julian Dindas, Doktorand an Hedrichs Lehrstuhl, hat dabei mit Hilfe von Mikroelektroden, die die elektrische Spannung der Zellmembran des Wurzelhaars registrieren – das sogenannte Membranpotential, die frühen Antworten der Zelle auf einen Hormonpuls untersucht.

Hilfe aus Freiburg und Nottingham

Das Ergebnis: Abhängig von der IAA-Konzentration und der Dauer der Anwendung, depolarisierte das Membranpotential, das heißt: Die negativ geladene Indolyl-Essigsäure setzte einen Prozess in Gang, in dessen Folge positiv geladene Ionen ins Zellinnere gelangten. Dieser Prozess war umso stärker, je mehr positive Ionen auf der Zellaußenseite vorlagen. „Das legte die Vermutung nahe, dass das negative geladene Hormonmolekül Indolyl-Essigsäure zusammen mit einem Überschuss an positiven Ionen in die Wurzelhaarzelle aufgenommen wird“, so Hedrich.

Dieses Messergebnis zog die nächste Frage automatisch nach sich: Welcher Transporter in der Zellmembran ist dafür verantwortlich? Die Frage war in Zusammenarbeit mit den Auxin-Genetikern Professor Klaus Palme aus Freiburg und Professor Malcolm Bennett aus Nottingham schnell beantwortet: „Aus einer Kollektion von Mutanten der Modellpflanze Arabidopsis mit untypischer Reaktion auf die Gabe von Auxin zeigte eine spezielle Mutante keine IAA-vermittelte Wurzelhaar-Depolarisation mehr“, so Hedrich.

Ein neuer Signalweg für ein ‚altes‘ Hormon

Zusätzlich zeigte diese Mutante auch keinen temporären Anstieg des zellulären Kalzium-Spiegels, wie er sich normalerweise nach einer IAA-induzierten Depolarisation beobachten lässt. „Damit war klar, dass die Wurzelhaar-Antwort auf Auxin von komplexer Natur und möglicherweise das Resultat einer Signalkette ist“, so der Pflanzenforscher.
Tatsächlich legten Untersuchungen weiterer Auxin-Mutanten nahe, dass sowohl ein spezieller Rezeptor-Komplex als auch ein Kalzium-Kanal mit von der Partie sein müssten. Fehlte eine Komponente dieses Dreiklangs aus Akteuren, Auxin-Transporter, Rezeptor oder Kalzium-Kanal, blieb die zellulare Antwort aus. „Dieses Verhalten konnten wir so interpretieren, dass IAA in der Zelle den Rezeptor dazu anregt, den Kalzium-Kanal zu öffnen, und damit der Zelle den Auftrag gibt, Zellteilung und Streckung dem Hormonsignal anzupassen“, erklärt Hedrich.

Ein Signal wandert durch die Wurzel

Wie Julian Dindas weiterhin durch eine direkte Mikro-Injektion von IAA in das Wurzelhaar nachweisen konnte, sendet eine mit Auxin behandelte Zelle nicht nur ein Kalzium-Signal aus. Vielmehr setzt sie eine sich selbst verstärkende Kalzium-Welle in Gang. Fluoreszenzmikroskopische Untersuchungen zeigten ihm, dass diese Kalzium-Welle bereits innerhalb weniger Minuten die Wurzelspitze erreicht.

Dort befindet sich nicht nur die Stammzellnische der Wurzel; dort sitzen auch Sensoren für ein Auxin-abhängiges Wachstum der Pflanze, das sich an der Schwerkraft orientiert. Man kann dies beispielsweise an Bäumen beobachten, die von einem Sturm umgelegt wurden. „Mit der Zeit schaffen es diese Bäume, ihre Wurzel wieder im Boden zu verankern und den Spross wieder aufzurichten“, so Hedrich. Das mache die Angelegenheit für die Wissenschaftler besonders spannend, „denn an dieser Schaltstelle wird über das Schicksal sich differenzierender Zellen und somit über die Wurzelarchitektur bestimmt.“

Dass unterschiedliche Auxin-Konzentrationen zwischen Zellen und deren Umgebung eine Schlüsselrolle bei diesen Differenzierungsvorgängen einnehmen, ist der Wissenschaft bekannt. Bisher sei dieser Aspekt allerdings eher vor dem Hintergrund der Gen-regulatorischen Wirkung des Hormons untersucht worden, so die Würzburger Pflanzenforscher. Über die physiologische Rolle des Auxin-Signalwegs in der Zellmembran sei hingegen nahezu nichts bekannt gewesen.

„Unsere Untersuchungen deuten darauf hin, dass lokale Auxin-Signale mit Hilfe von Kalzium-Wellen über lange Strecken kommuniziert werden können, um in weit entfernt lokalisierten Zielzellen ebenfalls ein Auxin-Signal zu generieren“, so Hedrich. Wie dies auf molekularer Ebene bewerkstelligt wird und wie die von den Würzburgern identifizierten Proteine des „Auxin-Signalosoms“ in dieses Szenario eingreifen, ist Gegenstand weiterer Experimente.

AUX1-mediated root hair auxin influx governs SCFTIR1/AFB -type Ca2+ signaling; Julian Dindas, Sönke Scherzer, M. Rob G. Roelfsema, Katharina von Meyer, Heike M. Müller, K. A. S. Al-Rasheid, Klaus Palme, Petra Dietrich, Dirk Becker, Malcolm J. Bennett & Rainer Hedrich; Nature Communications; DOI: 10.1038/s41467-018-03582-5

Kontakt

Prof. Dr. Rainer Hedrich, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Biozentrum der Universität Würzburg, T +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Bildunterschrift

(A) Pflanzen, deren Wachstumsrichtung im Experiment von vertikal nach horizontal geändert wird, müssen sich neu im Raum orientieren. Dabei spielt das Hormon Auxin eine wichtige Rolle. In Wildtyp-Pflanzen wächst zum Beispiel die Wurzelspitze sofort wieder in Richtung des Schwerkraftreizes - dies ist bereits nach sechs Stunden deutlich zu sehen (obere Pflanze, gelber Pfeil). Eine Mutante, in der das Gen für den Auxintransporter AUX1 defekt ist, kann den Schwerkraftreiz nicht in ‚korrektes‘ Wachstum umsetzen. Die Wurzelspitze ist orientierungslos (untere Pflanze).

(B) Mit Hilfe elektrophysiologischer Methoden konnte erstmals der Auxintransport in Epidermiszellen der Wurzel gemessen werden. Der Cartoon zeigt einen drei Tage alten Arabidopsis-Keimling. Die Ausschnittsvergrößerung zeigt den Einstich der Messelektrode in eine noch junge Wurzelhaarzelle. Eine Mikropipette ermöglicht die dosierte Applikation des Hormons.

(C) Die Applikation von Auxin führt zur Aktivierung des Protonen-gekoppelten Transports von Auxin und dadurch zu einer Depolarisation des Membranpotentials der Wurzelhaarzelle (schwarze Spur). Mutanten, denen der Auxin-Transporter (rote Spur), der Auxin-Rezeptor (grüne Spur) oder ein Calcium-Ionenkanal (blaue Spur) fehlen, zeigen diese Antwort nicht. (Fotos & Grafiken: Dirk Becker)

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics